
Release Note

Release Date: Jan. 2025

Product Version : midas Gen 2025 (v1.2)

Design + 2025 (v1.1)

Design System of General Structures

Index

midas Gen

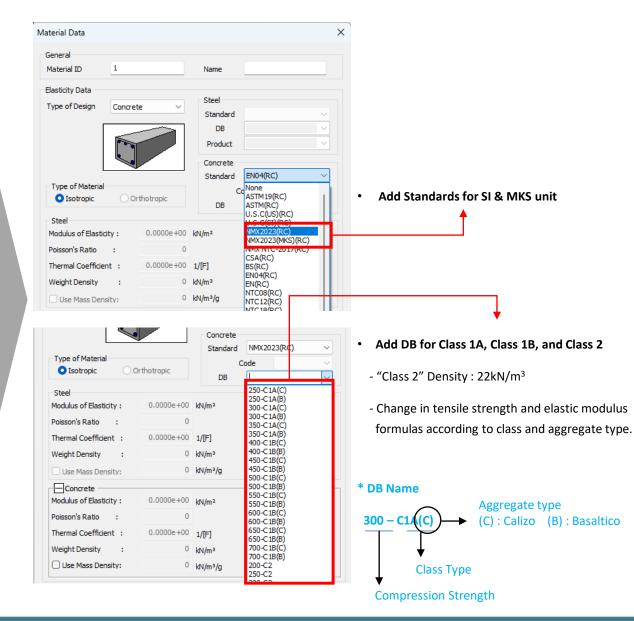
- 新墨西哥設計規範 (NMX 2023 & NTCS 2023): See Appendix 01
- 俄羅斯新設計規範 (Russian Standard): See Appendix 02
- 新增BS 5950-2000 鋼結構設計
- NSCP 2015 新增功能
- 依照IS規範改善地震及風力設計
 - 1. 根據IS:18168-2023 的鋼結構耐震設計規定
 - 2. 根據IS: 1893 (Part 1) 2016 的正交荷載組合效應
 - 3. 根據IS: 875 (Part 3) 2015 的動態風荷載應用改善
 - 4. 小錯誤修正
- **ETC**
 - 1.新增冷軋型鋼的組合類型斷面
 - 2. 修正 DTP (泰國) 規定中側向荷載的錯誤
 - 3. 增加 "Master Design" 新介面(僅義大利版本)
 - 4. 改善 Gen-IDEA statica Connection 介面 (載重組合)
 - 5.增加新鋼筋資料庫 (Rebar DB)

Design+

- 增加圓管鋼筋混凝土柱設計
- 改善擋土牆設計
- 增加聯合基礎模組(印度規範)
- 增加新鋼筋規範(Rebar DB)

Appendix

01: Revised provisions reflected in Gen of NTC & NMX 2023

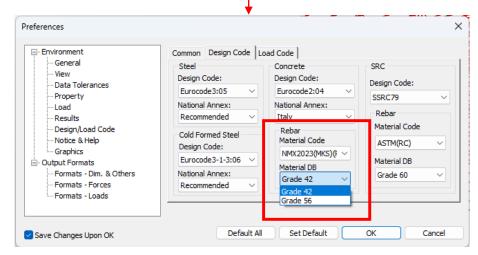

02 : Implemented Russian code in midas Gen

midas Gen

1. Added the rebar size & material DB of NMX 2023 (Mexican design code)增加鋼筋及材料DB為 NMX 2023 (墨西哥設計規範)

Tabla 2.2.1 - Clases y propiedades de los concretos estructurales convencionales

Requerimiento	Método	Cor	icreto Clase 1	Concreto
(inciso de referencia)	de ensayo	1A	1B	Clase 2
Resistencia a la compresión, f'_c (2.2.6)	NMX-C-083- ONNCCE-2020	$25 \le f'_c < 40 \text{ MPa}$ $(250 \le f'_c \le 400 \text{ kg/cm}^2)$	$40 \le f'_c \le 70 \text{ MPa}$ $(400 \le f'_c \le 700 \text{ kg/cm}^2)$	$20 \le f_c' \le 35 \text{ MPa}$ $(200 \le f_c' \le 350 \text{ kg/cm}^2)$
Resistencia media a la tensión, $\overline{f_t}$ (2.2.7)	NMX-C-163- ONNCCE-2019	$0.47\sqrt{f_c^t}$, en MPa $(1.5\sqrt{f_c^t}$, en kg/cm ²)	Concretos con agregado grueso calizo: 0.53√f ² _c , en MPa (1.67√f ² _c , en kg/cm ²) Concretos con agregado grueso basáltico: 0.47√f ² _c , en MPa (1.50√f ² _c , en kg/cm ²)	$0.38\sqrt{f_c^t}$, en MPa $(1.2\sqrt{f_c^t}$, en kg/cm ²)
Resistencia media a la tensión por flexión o módulo de rotura, $\overline{f_f}$ ($(2.2.7)$	NMX-C-191- ONNCCE-2015	$0.63\sqrt{f_c^t}$, en MPa $(2\sqrt{f_c^t}$, en k g /cm 2)	Concretos con agregado grueso calizo: 0.85√f ² _c , en MPa (2.70√f ² _c , en kg/cm ²) Concretos con agregado grueso basáltico: 0.80√f ² _c , en MPa (2.54√f ² _c , en kg/cm ²)	$0.44\sqrt{f_c^\prime}$, en MPa $(1.4\sqrt{f_c^\prime}, ext{en }kg/ ext{cm}^2)$
Peso volumétrico en estado fresco (2.2.2)	NMX-C-162- ONNCCE-2014	(>	19 ≤ peso vol. ≤ 22 kN/m ³ (1 900 ≤ peso vol. ≤ 2 200 kg/m ³)	
Módulo de elasticidad, E_c (2.2.8)	NMX-C-128- ONNCCE-2013	 Concretos con agregado grueso calizo: 4 400√f², en MPa (14 000√f², en kg/cm²) Concretos con agregado grueso basáltico: 3 500√f², en MPa (11 000√f², en kg/cm²) 	• Concretos con agregado grueso calizo: $2.700\sqrt{f_{c'}^{\prime}} + 11.000$, en MPa (8.500 $\sqrt{f_{c'}^{\prime}} + 110.000$, en kg/cm²) • Concretos con agregado grueso basáltico: $2.700\sqrt{f_{c'}^{\prime}} + 5.000$, en MPa (8.500 $\sqrt{f_{c'}^{\prime}} + 50.00$, en kg/cm²)	$2500\sqrt{f_c^2}$, en MPa (8 $000\sqrt{f_c^2}$, en kg/cm ²)
Contracción por secado, ε_{cf} (2.2.9)	NMX-C-173- ONNCCE-2010	≤ 0.001	≤ 0.0006	≤ 0.002
Coeficiente de flujo plástico, $C_{\ell}(2.2.10)$	ASTM C512/C512M-15		2	4
Aplicaciones		Debe utilizarse en: Cimentaciones y estr Estructuras con reque	Es aceptable el uso en estructuras del grupo B2 que cumplan con todo lo siguiente: Claros no mayores que 4 m Altura total de no más de 5 m en dos niveles, sobre nivel de banqueta y Estructuras de no más de 120 m² de construcción.	

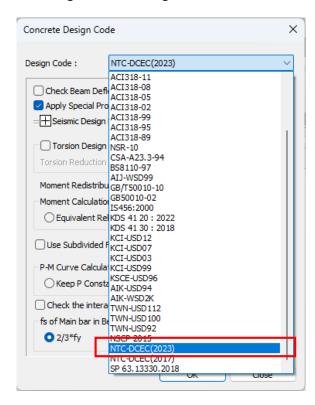

2. Added the rebar size & material DB of NMX 2023 (Mexican design code)增加NMX 2023鋼筋及材料DB (墨西哥設計規範)

DB	Ec modulus of elasticity	W weight density	Diameter	Area	Weight
UNIT	stress = F/L^2	density = F/L^3	cm	cm2	kgf/cm
#2	2.00E+06	0.00792	0.79	0.49	0.004
#3	2.00E+06	0.00788	0.953	0.71	0.006
#4	2.00E+06	0.00783	1.27	1.27	0.010
#5	2.00E+06	0.00784	1.588	1.98	0.016
#6	2.00E+06	0.00784	1.905	2.85	0.022
#7	2.00E+06	0.00784	2.223	3.88	0.030
#8	2.00E+06	0.00784	2.54	5.07	0.040
#9	2.00E+06	0.00784	2.865	6.42	0.050
#10	2.00E+06	0.00784	3.18	7.94	0.062
#11	2.00E+06	0.00784	3.49	9.57	0.075
#12	2.00E+06	0.00784	3.81	11.4	0.089
#14	2.00E+06	0.00783	4.45	15.52	0.121
#16	2.00E+06	0.00784	5.08	20.26	0.159
#18	2.00E+06	0.00783	5.72	25.65	0.201

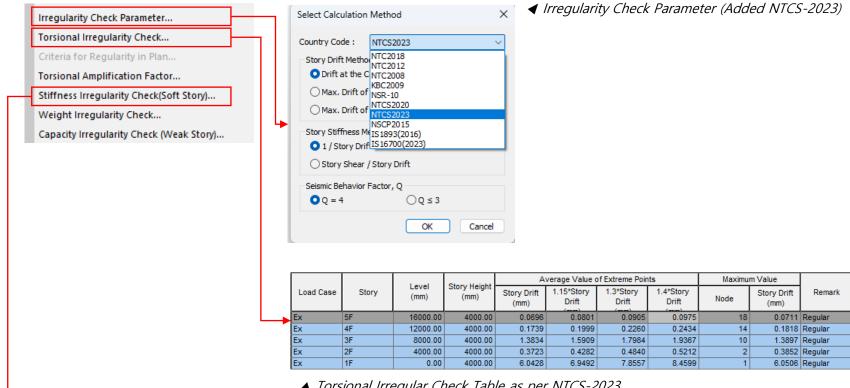
bar Code	NMX-	2013(MKS)				
СНК	Name	Dia (m)	Area (m²)	Dia(Out) (m)	Weight (kN/m)	1
	#2	0.0079	0.0000	0.0079	0.0038	
	#3	0.0095	0.0001	0.0095	0.0055	
	#4	0.0127	0.0001	0.0127	0.0097	
	#5	0.0159	0.0002	0.0159	0.0152	
	#6	0.0191	0.0003	0.0191	0.0219	
	#7	0.0222	0.0004	0.0222	0.0298	
	#8	0.0254	0.0005	0.0254	0.0390	
	#9	0.0287	0.0006	0.0287	0.0494	
	#10	0.0318	0.0008	0.0318	0.0610	
	#11	0.0349	0.0010	0.0349	0.0736	
	#12	0.0381	0.0011	0.0381	0.0877	
	#14	0.0445	0.0016	0.0445	0.1191	
	#16	0.0508	0.0020	0.0508	0.1558	
	#18	0.0572	0.0026	0.0572	0.1969	

Tabla 2.4.2.1.2.b - Requisitos de tensión para refuerzo NMX-B-457-CANACERO-2019

Requisitos	Grado 42	Grado 56
Resistencia mínima a la tensión, MPa (kg/cm²)	550 (5 600)	690 (7 030)
Esfuerzo de fluencia, mínimo, MPa (kg/cm²)	412 (4 200)	550 (5 600)
Esfuerzo de fluencia, máximo, MPa (kg/cm²)	540 (5 500)	675 (6 880)
Relación mínima entre la resistencia a la tensión real y el esfuerzo de fluencia real	1.25	1.25
Alargamiento a la fractura en 200 mm, mínimo, %		
Designación 3, 4, 5, 6	14	12
Designación 7, 8, 9, 10, 11, 12	12	12
Designación 14, 16, 18	10	10


▲ Rebar Material DB as per NMX 2023

◆ Rebar Size DB as per NMX 2023

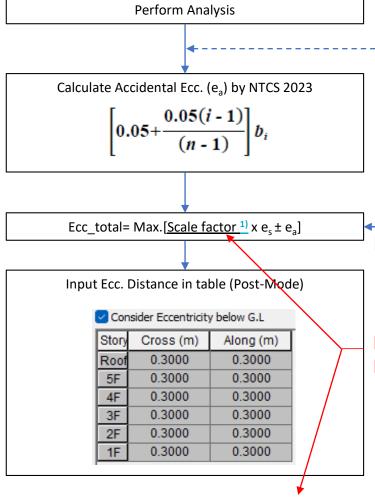

<u>o to Index</u> - 04 -

3. Added Design Code for NMX 2023 (Mexican design code)增加NMX 2023設計規範 (墨西哥設計規範)

Design Code Setting for NTC-DCEC 2023

Irregularity Check for NTC-DCEC 2023

▲ Torsional Irregular Check Table as per NTCS-2023


		Level	0411	Ctory Doig	Story Shear	Story	Upper Story Stiffness					Average(Ki+1, Ki-1)		
Load Case	Story	Level (mm)	Story Height (mm)	Story Drift (mm)	Force (kN)	Stiffness	1.3K (Upper)	0.85K (Upper)	0.5K (Upper)	0.4K (Upper)	Remark	0.5K (Average)	0.4K (Average)	Remark
Ex	5F	16000.00	4000.00	0.0696	3.61	57436.14	-	-	-	-		-	-	
Ex	4F	12000.00	4000.00	0.1739	7.40	23005.77	74666.98	48820.72	28718.07	22974.45	Irregular	15081.90	12065.52	Regular
Ex	3F	8000.00	4000.00	1.3834	10.13	2891.46	29907.50	19554.90	11502.89	9202.31	Irregular	8437.35	6749.88	Strongly Irreg
Ex	2F	4000.00	4000.00	0.3723	11.95	10743.61	3758.90	2457.74	1445.73	1156.58	Irregular	888.35	710.68	Regular
Ex	1F	0.00	4000.00	6.0428	12.86	661.94	13966.69	9132.07	5371.80	4297.44	Irregular	-	-	

▲ Stiffness Irregular Check Table as per NTCS-2023

- 05 -

4. Added Eccentricity as per NTCS 2023 依 NTCS 2023 增加偏心考量

- The analysis eccentricity is additionally reflected in the accidental eccentricity.
- The accidental eccentricity ratio can be reflected to increase linearly.

1) $\underline{e_s}$ (analysis Ecc.) is automatically reflected during an analysis, so it is used only when applying a factor exceeding 1.0.

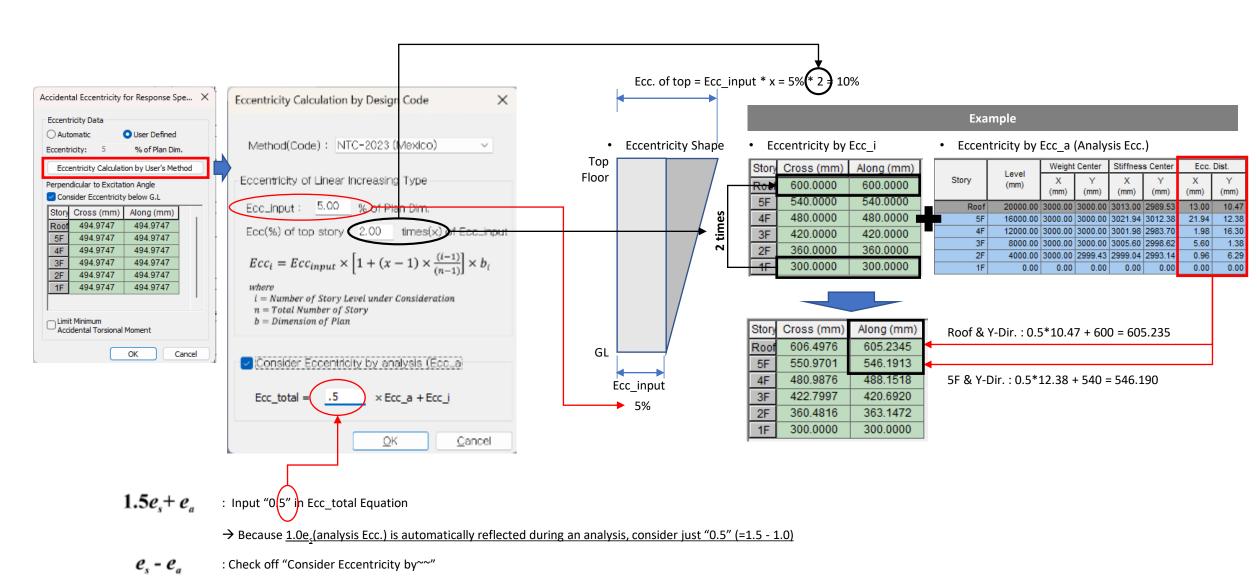
• Get Analysis Ecc. (e_s) from Story Eccentricity Table

4 /	Start Pa	ge 🏻 🞑 MII	DAS/Gen	G	Result-[S	tory Ecc	entricity]	×
		Level	Weight	Center	Stiffnes	s Center	Ecc.	Dist.
	Story	Level (m)	X (m)	(m)	X (m)	Y (m)	X (m)	Y (m)
	Roof	20.00	0.00	0.00	0.00	0.00	0.00	0.00
	5F	16.00	0.00	0.00	0.00	0.00	0.00	0.00
	4F	12.00	0.00	0.00	0.00	0.00	0.00	0.00
	3F	8.00	0.00	0.00	0.00	0.00	0.00	0.00
	2F	4.00	0.00	0.00	0.00	0.00	0.00	0.00
	1F	0.00	0.00	0.00	0.00	0.00	0.00	0.00

2.3 Efectos de torsión

La excentricidad torsional, e₅, calculada en cada entrepiso, debe tomarse como la distancia entre el centro de torsión del nivel correspondiente y la línea de acción de la fuerza lateral que actúa en él. Para fines de diseño, el momento torsionante debe tomarse, por lo menos, igual a la fuerza lateral que actúa en el nivel multiplicada por la excentricidad que para cada elemento vertical sismo-resistente resulte más desfavorable de las siguientes:

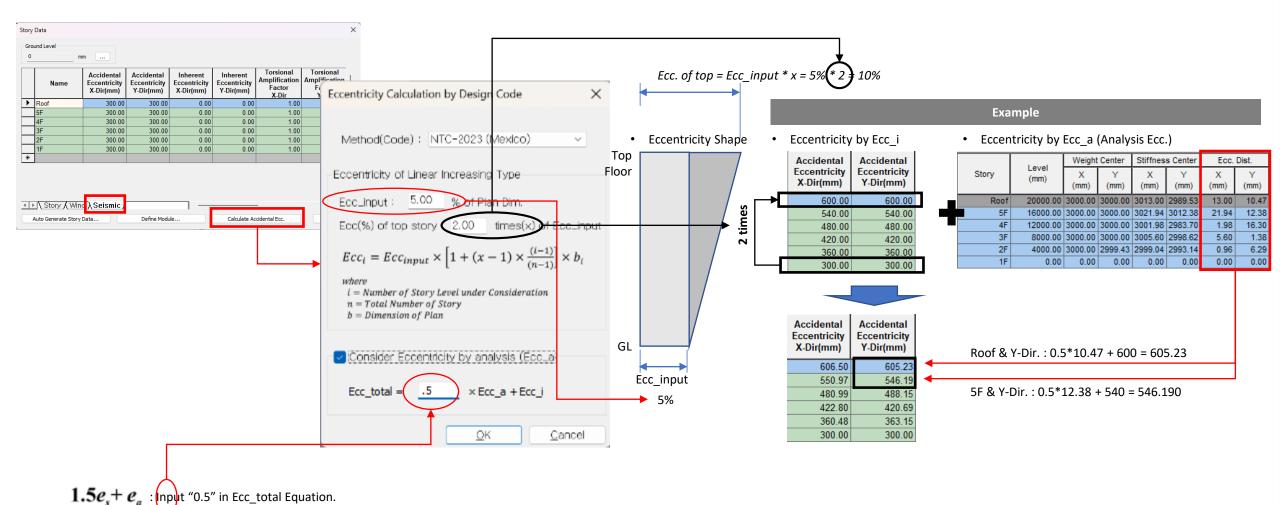
[Example] Scale factor =
$$(1.5 - 1) = 0.5$$
 $(2.3.1.a)$ [Example] Scale factor = $(1.0 - 1) = 0$ $(2.3.1.b)$


donde e_n es la excentricidad accidental en la dirección de análisis, medida perpendicularmente a la acción sísmica.

La excentricidad accidental, en, en la dirección perpendicular a la de análisis en el i-ésimo entrepiso debe calcularse como igue:

$$\left[0.05 + \frac{0.05(i-1)}{(n-1)}\right]b_i \tag{2.3.2}$$

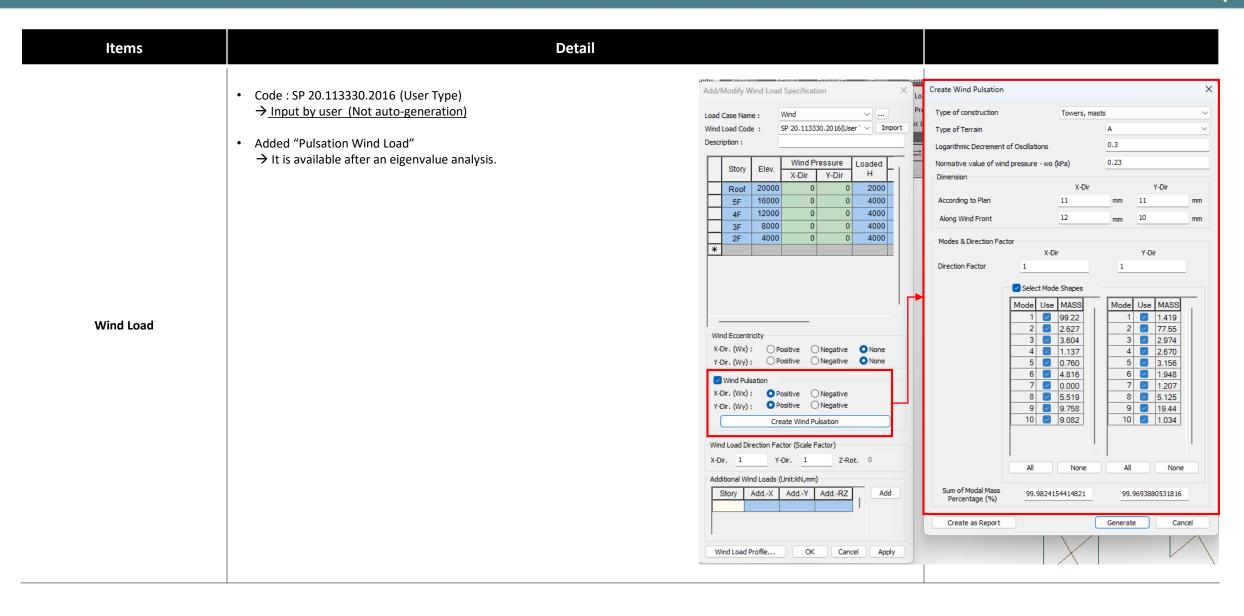
donde b_i es la dimensión del *i-ésimo* piso en la dirección perpendicular a la dirección de análisis; y n, el número de pisos del sistema estructural. Cuando las fuerzas sísmicas se aplican de manera concurrente en 2 direcciones ortogonales, la excentricidad accidental no necesita ser considerada de manera simultánea en ambas direcciones, sino que debe ser aplicada en la dirección que produce el mayor efecto.

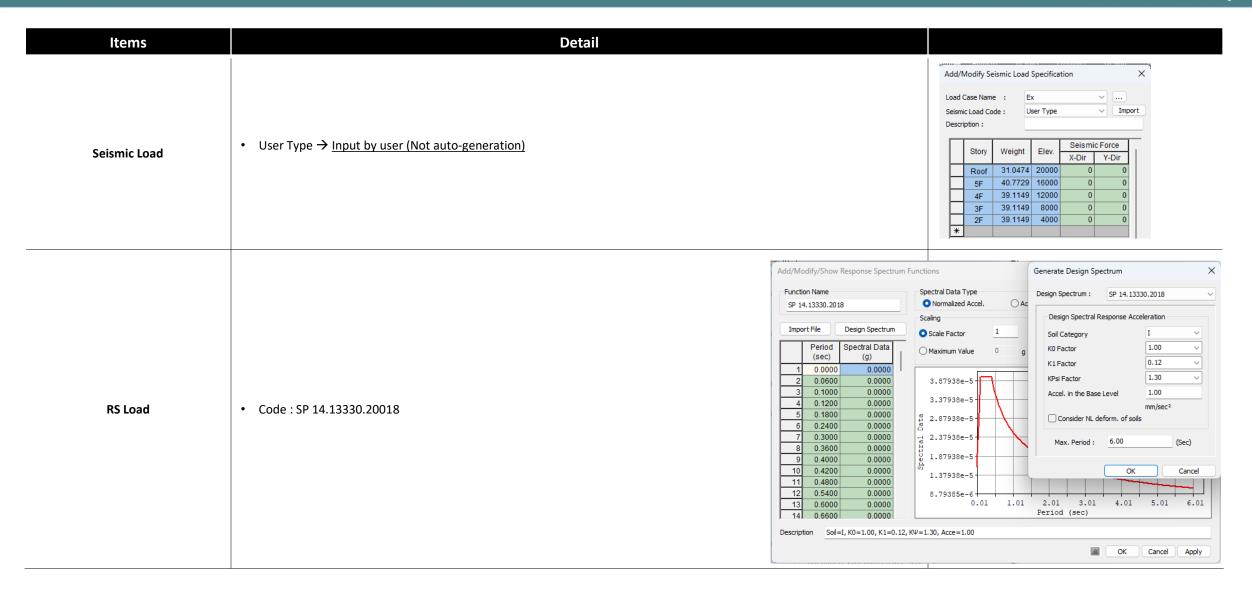

4. Added Eccentricity as per NTCS 2023: Eccentricity in Response Spectrum 依 NTCS 2023增加偏心考量:反應譜中的偏心考量

<u>▲ Go to Index</u>

→ Because 1.0e (analysis Ecc.) is automatically reflected during an analysis, Ecc. a (Analysis Ecc.) should not be considered

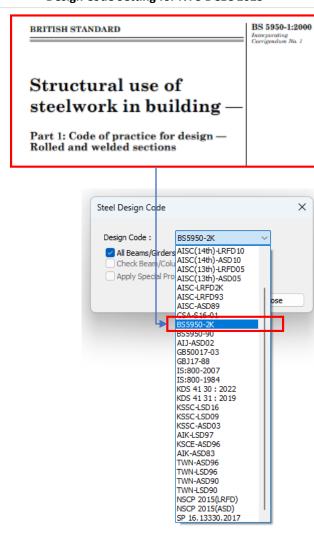
4. Added Eccentricity as per NTCS 2023: Eccentricity for Static Seismic 依 NTCS 2023增加偏心考量:靜態地震的偏心考量

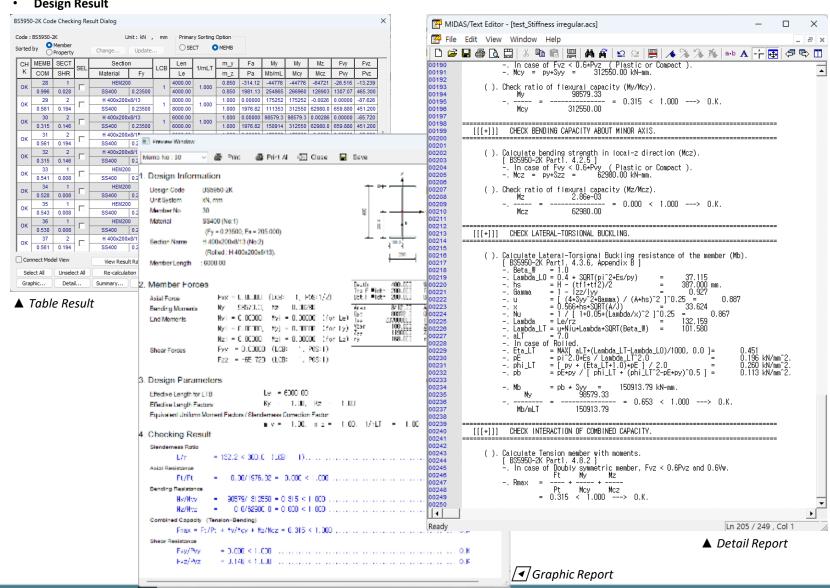

→ Because 1.0e_s(analysis Ecc.) is automatically reflected during an analysis, consider just "0.5" (=1.5 - 1.0)


 $e_s - e_a$: Check off "Consider Eccentricity by"

→ Because 1.0e_s(analysis Ecc.) is automatically reflected during an analysis, Ecc. a (Analysis Ecc.) should not be considered

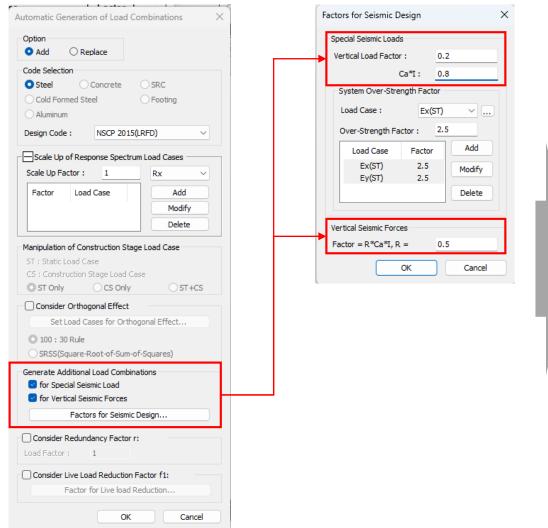
Items	Detail	
Steel Material	 SP 16_2017 (t.B3): C235 / C245 / C255 / C345K / C355 / C355-1; / C355-K / C355Π / C390; / C390-1 / C440 / C550 / C590 / C69 SP 16_2017 (t.B4): C2556 / C2556-1 / C3456 / C3456-1 / C3556 / C3556-1 / C3906 / C4406 SP 16_2017 (t.B5): C245 / C255 / C345 / C345K / C355 / C355-1 / C390 / C 	Type of Material Type of Material Control of Design Steel Steel Standard SP 16.2017t.83(5) D6 Product C135 C235 C345K Standard Standard C155-1 C9C155-4 C9C155-4 D8 C155-7 C155-7 C255-6 D8 C155-7 C255-8 C255-8 C355-8 C355-9 C355-8 C355-9 C355
RC material	• SP 63-2018 → Heavyweight, Fine grained-gr A type, Fine grained-gr B type (丑기: B + Number + Type) → Lightweight D800, D1000, D1200, D1400, D1600, D1800, D2000 (丑기: LB + Number) → Cellular D500, D600, D700, D800, D900, D1000, D1100, D1200 (丑기: CB + Number)	Steel
Steel Section DB	 I-Shape(GOST 8239 – 89, GOST 26020 – 83, STO ASCHM 20 – 93, GOST 19425-74, GOST P 57837-2017) Channel Bar (GOST 8240 - 97) Cold Formed Channel (GOST 8278 - 83) T-Shape (GOST 8239 – 72, TU 14 - 2 - 24 – 72) Angle (GOST 8509 – 93, GOST 8510 - 72) Box (GOST 30245 – 2003, GOST 8639 – 82, GOST P 54157 – 2010) Pipe (GOST 8732 – 78, GOST 10704-91, GOST 54929-2012) Solid Circle / Square (GOST 2590-2006, GOST 2591-2006) Z-Shape (TU 100-180) 	Type of Material Standard SP63.2018(RC) Code Cod
Rebar Material / DB	 Material: SP 63-2018 → A240 / A400 / A500 / A600 / A800 / A1000 / B500 / BP500 / BP1200 / BP1300 / Bp1400 / BP1500 / Bp1600 / K1400 / K1450 / K1550 / K1650 / K1750 / K1850 / K1900 Size: GOST → #4 / #5 / #6 / #7 / #8 / #9 / #10 / #11 / #12 / #13 / #14 / #15 / #16 / #17 / #18 / #19 / #20 / #22 / #25 / #28 / #32 / #36 / #40 	Performers Int International Common Order Only Load Code - Charmed Common Code Code Code - Charmed Code Code Code Code Code Code Code Co


Items	Detail	
Steel Design	 Design Code: SP 16.13330.2017 Added Design parameter features Type of stress state Cross Rib Length Local stress Pure bending zone Lateral buckling Supported Table design result, Graphic result, Detail result 	Steel Design Code Design Code: SP 16.13330.2017 All Beams/Girders are Laterally Braced Check Beam/Column Deflection Apply Special Provisions for Seismic Design OK Close
RC Design	 Design Code: SP 63.13330.2018 Supported Member Design type: Beam, Column, Truss, Wall, Meshed Slab, Meshed Wall Supported Table design result, Graphic result, Detail result 	Concrete Design Code Design Code: SP 63.13330.2018 General Parameter Consider Phi_n for longitudinal forces The system is statically determinable Take creep into account Calculation for the second group of limit states Seismic Design Parameter Cosider SP 14.13330.2018 Include seismics in the calculation of crack resistance Select Earthquake-Resistant Grade Intensity degree 7.0 Intensity degree 8.0 Intensity degree 9.0 P-M Curve Calculation Method Keep P Constant Keep M/P Constant



1. Added Steel Design as per BS 5950-2000 新增 BS 5950-2000 鋼結構設計

Design Code Setting for NTC-DCEC 2023



Design Result

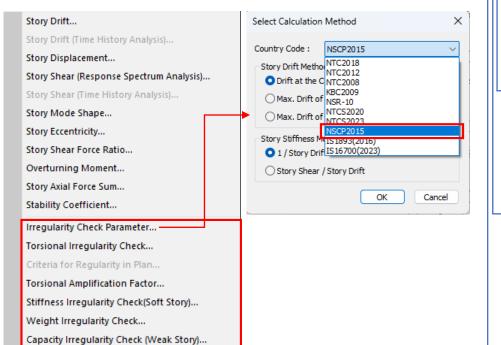
1. Added Auto-Generation of Special and Vertical Seismic Load per NSCP 2015 新增 NSCP 2015 載重組合自動產生

Load Combination Setting for NTC-DCEC 2023

Load Combination Table

	No	Name	Active	Type	Description
<u> </u>	1	sLCB42	Special	Add	1.4(D)
	2	sLCB43	Special	Add	1.2(D) + 1.6L
	3	sLCB44	Special	Add	1.2D + 1.0(2.5)Ex + 1.0(1.0L) + (0.2)(0.8)D
	4	sLCB45	Special	Add	1.2D + 1.0(2.5)Ey + 1.0(1.0L) + (0.2)(0.8)D
	5	sLCB46	Special	Add	1.2D - 1.0(2.5)Ex + 1.0(1.0L) + (0.2)(0.8)D
	6	sLCB47	Special	Add	1.2D - 1.0(2.5)Ey + 1.0(1.0L) + (0.2)(0.8)D
	7	sLCB56	Special	Add	0.9D + 1.0(2.5)Ex - (0.2)(0.8)D
	8	sLCB57	Special	Add	0.9D + 1.0(2.5)Ey - (0.2)(0.8)D
	9	sLCB58	Special	Add	0.9D - 1.0(2.5)Ex - (0.2)(0.8)D
	10	sLCB59	Special	Add	0.9D - 1.0(2.5)Ey - (0.2)(0.8)D
	11	sLCB68	Vertical	Add	1.4(D) Vertical Load Factor * (C _a l) *
	12	sLCB69	Vertical	Add	1.2(D) + 1.6L
	13	sLCB70	Vertical	Add	1.2D + 1.0Ex + 1.0(1.0L)
	14	sLCB71	Vertical	Add	1.2D + 1.0Ey + 1.0(1.0L)
	15	sLCB72	Vertical	Add	1.2D - 1.0Ex + 1.0(1.0L)
	16	sLCB73	Vertical	Add	1.2D - 1.0Ey + 1.0(1.0L)
	17	sLCB82	Vertical	Add	0.9D + 1.0Ex
	18	sLCB83	Vertical	Add	0.9D + 1.0Ey
	19	sLCB84	Vertical	Add	0.9D - 1.0Ex
	20	sLCB85	Vertical	Add	0.9D - 1.0Ey
	21	sLCB94	Vertical	Add	-(0.4)D + 1.0Ex
	22	sLCB95	Vertical	Add	-(0.4)D + 1.0Ey
	23	sLCB96	Vertical	Add	-(0.4)D 1.0Ex
	24	sLCB97	Vertical	Add	-(0.4)D 1.0Ey

Vertical Seismic Force → R * C_aI * Dead Load


Torsional Irregularity Check

Calculation of Torsional Amplification Factory

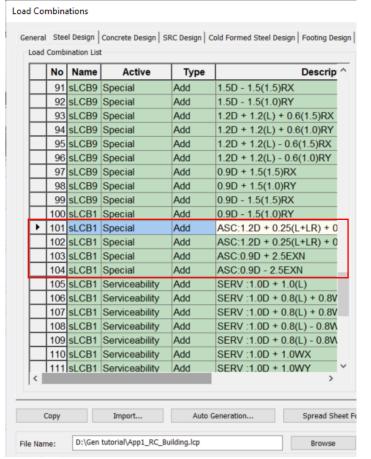
Stiffness Irregularity Check (Soft Story)

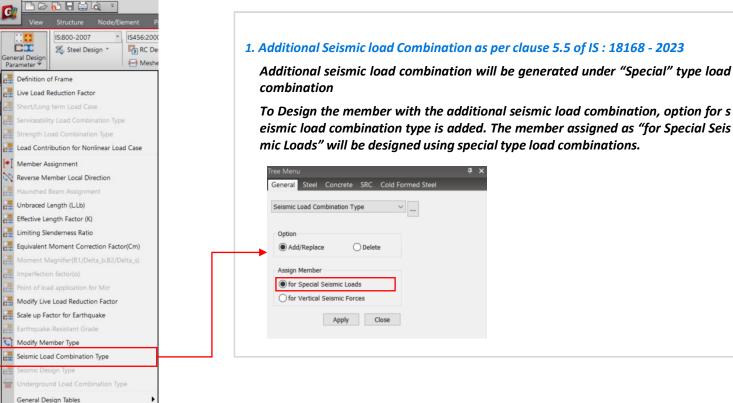
Weight Irregularity Check

Capacity Irregularity Check (Weak Story)

				Laurel	Otana Halaba	Average Value	e of Extreme Points	Maxi	mum Value	
		Load Case	Story	Level (mm)	Story Height (mm)	Story Drift (mm)	1.2*Story Drift (mm)	Node	Story Drift (mm)	Remark
_	→	Ex	5F	16000.00	4000.00	0.0696	0.0836	18	0.0711	Regular
		Ex	4F	12000.00	4000.00	0.1739	0.2086	14	0.1818	Regular
- 1		Ex	3F	8000.00	4000.00	1.3834	1.6601	10	1.3897	Regular
- 1		Ex	2F	4000.00	4000.00	0.3723	0.4468	2	0.3852	Regular
-		Ex	1F	0.00	4000.00	6.0428	7.2514	1	6.0506	Regular

				Lovet	Ctoo . Hoiobt	Average Displacement	Maximu	m Displacement	Torsional			
		Load Case	Story	Level (mm)	Story Height (mm)	of Extreme Points (mm)	Node	Displacement (mm)	Amplification Factor (Ax)	Note		
	To obtain right results, the torsional amplification factors in 'Story/Seismic Tab' dialogue box must be all set to '1'.											
4		Ex	Roof	20000.00	0.00	8.0420	22	8.0784	0.701			
		Ex	5F	16000.00	4000.00	7.9724	18	8.0073	0.701			
		Ex	4F	12000.00	4000.00	7.7985	14	7.8255	0.699			
		Ex	3F	8000.00	4000.00	6.4151	10	6.4358	0.699			
		Ex	2F	4000.00	4000.00	6.0428	2	6.0506	0.696			
		Ex	1F	0.00	4000.00	0.0000	0	0.0000	0.000	No Diaphragm		

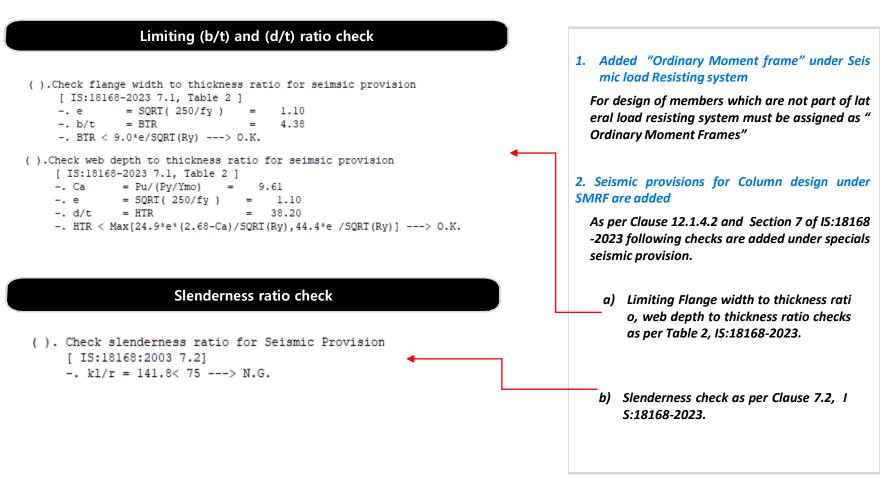

				Level	Story Height	Story Drift (mm)	Story Shear Force (kN)	Force Story	Upper Sto	Upper Story Stiffness		Story Drift Angle	
	_	Load Case	Story	(mm)	(mm)				0.7Ku1	0.8Ku123	Stiffness Ratio	Ratio	Remark
	•	Ex	5F	16000.00	4000.00	0.0696	3.61	57436.14	0.00	0.00	0.000	0.000	Regular
7		Ex	4F	12000.00	4000.00	0.1739	7.40	23005.77	40205.30	0.00	0.572	2.497	Irregular
		Ex	3F	8000.00	4000.00	1.3834	10.13	2891.46	16104.04	0.00	0.180	7.956	Irregular
		Ex	2F	4000.00	4000.00	0.3723	11.95	10743.61	2024.02	22222.23	0.483	0.269	Regular
		Ex	1F	0.00	4000.00	6.0428	12.86	661.94	7520.53	9770.89	0.068	16.230	Irregular


		Load Case	Story	Level (mm)	Story Height (mm)	Story Weight (kN)	Adjacent St	tory Weight	Story Weight Ratio	Story Drift Angle Ratio	Remark
→							1.5M(Upper) (kN)	1.5M(Lower) (kN)			
	•	Ex	Roof	20000.00	0.00	31.047	0.000	61.159	0.508	0.000	Regular
		Ex	5F	16000.00	4000.00	40.773	46.571	58.672	0.875	0.000	Regular
		Ex	4F	12000.00	4000.00	39.115	61.159	58.672	0.667	2.497	Regular
		Ex	3F	8000.00	4000.00	39.115	58.672	58.672	0.667	7.956	Regular
		Ex	2F	4000.00	4000.00	39.115	58.672	0.000	0.667	0.269	Regular
		Ex	1F	0.00	4000.00	9.404	58.672	0.000	0.160	16.230	Regular

		Story	Level (mm)	Story Height (mm)	Angle1 ([deg])	Story Shear Strength1 (kN)	Upper Story Shear Strength1 (kN)	Story Shear Strength Ratio1	Remark1	Angle2 ([deg])	Story Shear Strength2 (kN)	Upper Story Shear Strength2 (kN)	Story Shear Strength Ratio2	Remark2
	Angle = 0 [Deg]													
→ [Input angle a to change th	and press the ' ne angle.	Apply' button	0.00	Apply								
	•	5F	16000.00	4000.00	0.00	2440.7805	0.0000	0.0000	Regular	90.00	5416.9485	0.0000	0.0000	Regular
		4F	12000.00	4000.00	0.00	2440.7805	2440.7805	1.0000	Regular	90.00	4840.9998	5416.9485	0.8937	Regular
		3F	8000.00	4000.00	0.00	1861.2000	2440.7805	0.7625	Regular	90.00	5416.9485	4840.9998	1.1190	Regular
		2F	4000.00	4000.00	0.00	2440.7805	1861.2000	1.3114	Regular	90.00	4840.9998	5416.9485	0.8937	Regular
		1F	0.00	4000.00	0.00	1861.2000	2440.7805	0.7625	Regular	90.00	5416.9485	4840.9998	1.1190	Regular

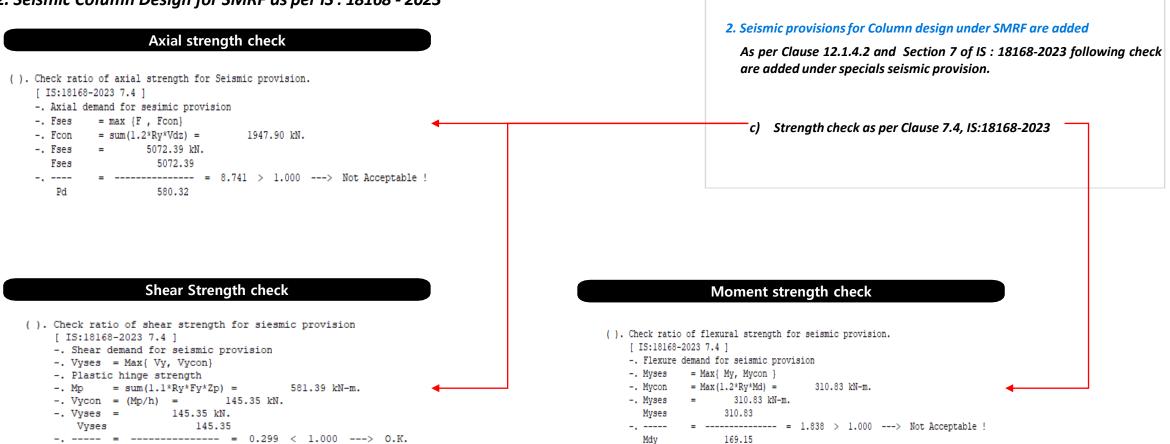
根據IS:18168-2023 的鋼結構耐震設計規定

1. Improvement in Additional Seismic Load Combination as per IS: 18168 - 2023



根據IS:18168-2023 的鋼結構耐震設計規定

2. Seismic Column Design for SMRF as per IS: 18168 - 2023



根據IS:18168-2023 的鋼結構耐震設計規定

2. Seismic Column Design for SMRF as per IS: 18168 - 2023

486.37

根據IS:18168-2023 的鋼結構耐震設計規定

3. Seismic column design for SCBF as per IS: 18168 - 2023

Limiting (b/t) and (d/t) ratio check

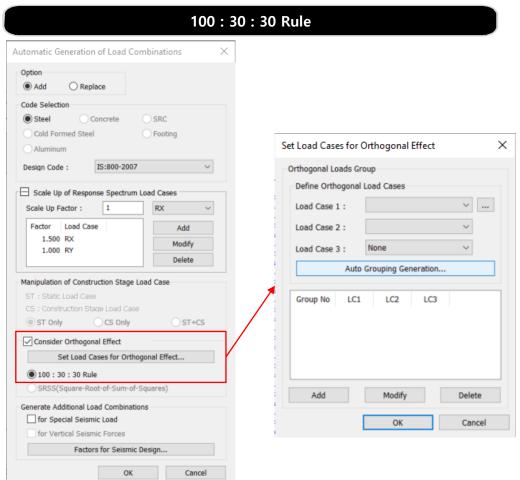
1. Seismic provisions for column design under SCBF are added

As per Clause 12.2.4 and Section 6 of IS: 18168-2023 following checks are added under specials seismic provision.

- _a) Limiting Flange width to thickness ratio, web depth to thicknes s ratio checks as per Table 2, IS :18168-2023.
- b) Slenderness check as per Clause 7.2, IS:18168-2023.

Slenderness ratio check

(). Check slenderness ratio for Seismic Provision
[IS:18168:2003 7.2]
-. kl/r = 141.8< 75 ---> N.G.


<u>▲ Go to Index</u> - 15 -

Orthogonal load combination as per IS: 1893 (Part 1) - 2016

根據 IS: 1893 (Part 1) - 2016 的正交荷載組合效應

1. 100:30:30 rule in orthogonal effects

• Results > Load combination > Design code > Consider orthogonal effects

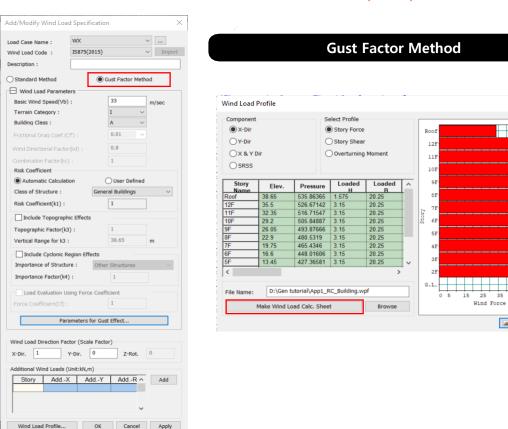
1. 100: 30: 30 rule in orthogonal effects

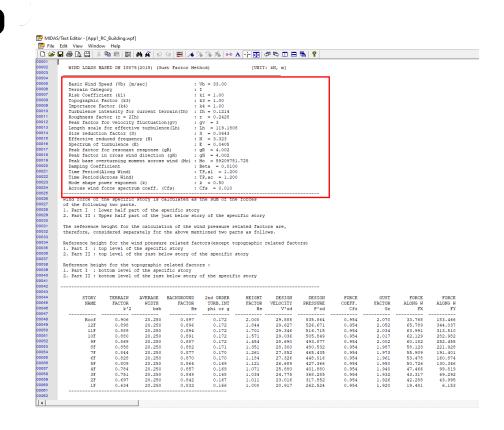
According to Clause 6.3.4.1, IS: 1893 Part-1-2016,

When responses from the three earthquake components are to be considered i.e. X,Y, and Z. Where X and Y are orthogonal plan direction and Z is vertical direction. Thus, the structure should be designed for the following sets of combinations of earthquake load effects

$$\pm EQ_x \pm 0.3EQ_y \pm 0.3EQ_z$$

$$\pm EQ_y \pm 0.3EQ_x \pm 0.3EQ_z$$


$$\pm EQ_z \pm 0.3EQ_x \pm 0.3EQ_y$$


Improvement in Dynamic wind load application as per IS: 875 (Part 3) - 2015

根據 IS: 875 (Part 3) - 2015 的動態風荷載應用功能改善

1. Gust factor method

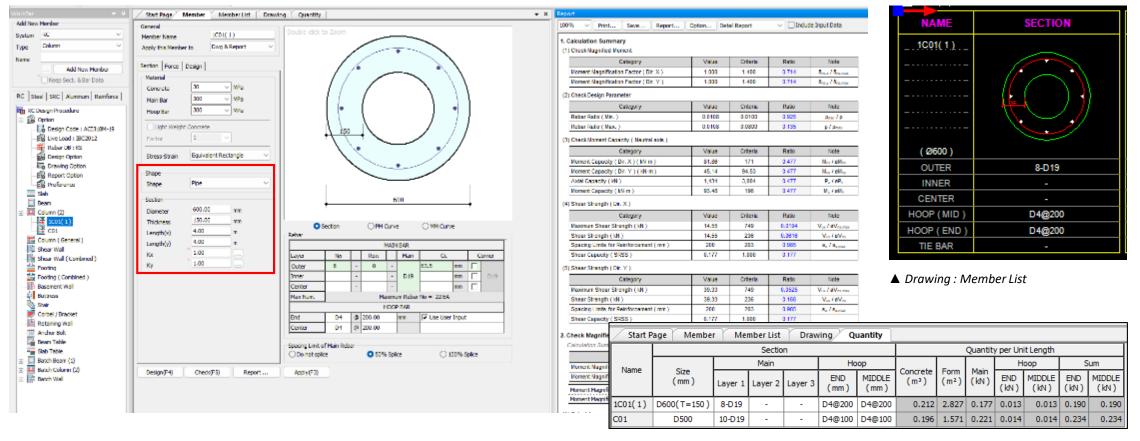
- Now gust factor can be applied for Both X & Y directions
 - Load > Static Load > Lateral > Wind Loads.> IS: 875 (Part-3) 2015 > Gust factor method

<u>Go to Index</u>

45 55 65

ETC

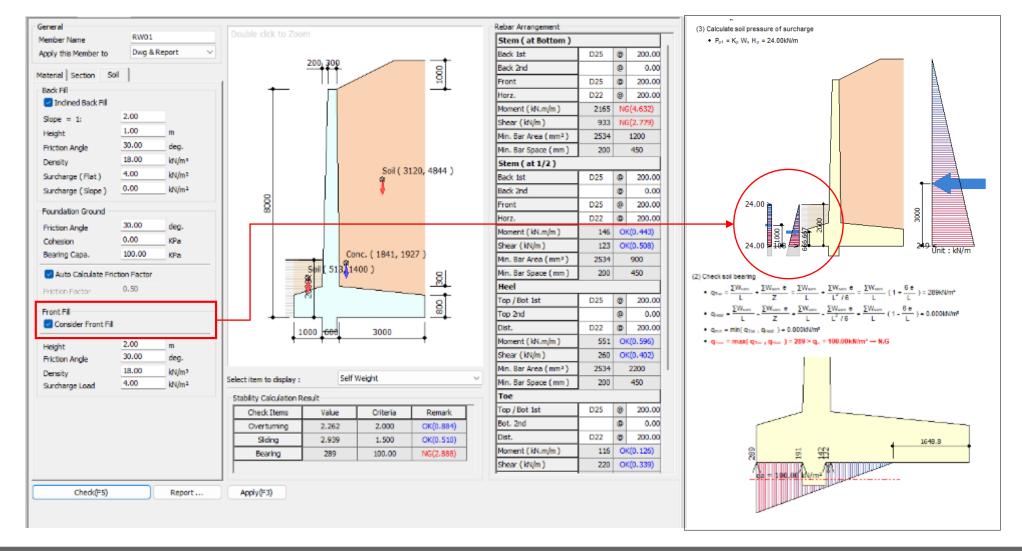
ltems	Detail	Country
RC Shear wall Design	 Minor bug fix for Shear wall design as per IS: 456 – 2000 & IS: 13920 - 2016 	Only for India
Strong Column Weak beam	• Fixed the bug for Strong column weak beam check as per IS: 13920 -2016	Only for India



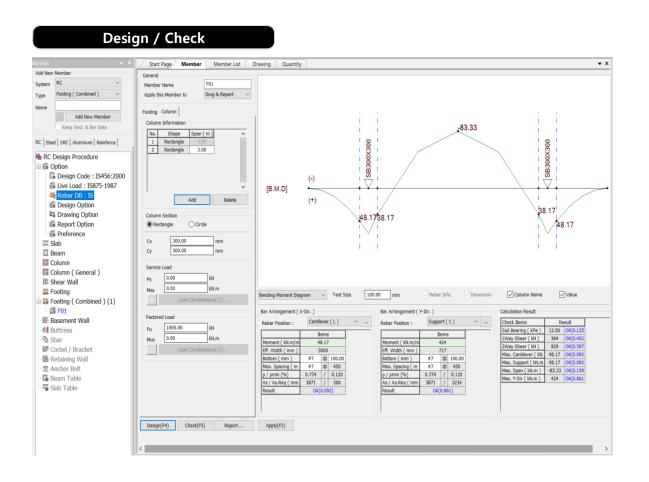
Items	Detail	
Cold Formed Section	 Supported the combined cold-formed section. Combined No.: 1~4 Combined Type (IS, IW, ES, EW) - I: Web-to-web shape (I-shape) - E: Flange-to-Flange shape (Box-shape) - S: Bolt(Screw) connection - W: Welded connection 	DB/User Value SRC Combined Tapered Composite
Lateral Load as per DTP (Thailand)	 Fixed the bug for static seismic load & response spectrum Fixed the bug for static wind load 	
Interface	Add "Master Design"	Only for Italy
IDEA statica Connection	The member forces by each load combination can be exported to IDEA statica connection.	
Addition of Rebar DB	 Thailand: TIS(SI), TIS(MKS) Mexico: NMX-2013 (SI), NMX-2013 (MKS) Russia: GOST-SP, GOST-SNiP, SP 63-2018 Austria / New Zealand: AS / NZS South Africa: TMH7 	

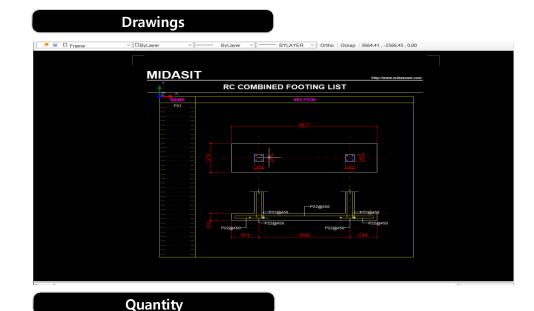
midas Design+

1. Added RC pipe column design as per ACI 依照ACI增加圓管鋼筋混凝土柱設計


- Supported Design Code: ACI 318(M) -11, ACI 318(M) -14, ACI 318(M) -19, KDS 41 20: 2022, KDS 41 20: 2018, NSR-10
- Supported Features: Column Design, Patch Column Design, Drawing, Quantity

▲ Quantity


1. Improved retained wall design as follows 改善擋土牆設計


- Application of load (Active Soil Pressure) by Front Fill 考慮牆前的主動土壓力載重應用
- Reinforcement of Detail Report.: Explain the design process and formulas in more detail 詳細報表包含鋼筋配置,說明設計流程公式計算等

1. Added Combined footing Module for IS: 456 - 2000 增加聯合基礎模組(印度規範)

Added combined footing module for IS: 456-2000

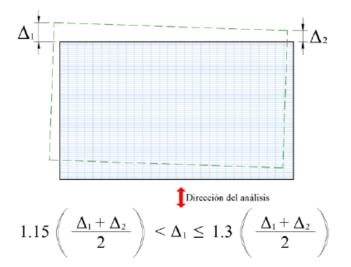
Member Member List Drawing Quantity Section Quantity per Unit Length Dir X Dir Y Footing Dir X Dir Y Bottom Bottom Total Name Concrete Top Lx Ly Thick Top **Bottom** Bottom (m³)(kN) Rebar Rebar Rebar (m) (m) (mm) Rebar Rebar Rebar (kN) (kN) (kN) F01(Cant.L) 5.00 3.00 500 0.002 0.000 0.000 0.000 0.000 #7@100 F01(Colm1) 5.00 3.00 500 #7@100 #7@100 0.002 0.000 0.000 0.000 0.000 F01(Span1-2) 5.00 500 #7@100 0.002 0.000 0.000 0.000 0.000 3.00 F01(Colm2) 500 0.000 0.000 5.00 3.00 #7@100 #7@100 0.002 0.000 0.000 F01(Cant.R) 5.00 3.00 500 #7@100 0.002 0.000 0.000 0.000 0.000

Items	Detail		
Addition of Rebar DB	 Thailand: TIS(SI), TIS(MKS) Mexico: NMX-2013 (SI), NMX-2013 (MKS) Russia: GOST-SP, GOST-SNiP, SP 63-2018 Australia: AS South Africa: TMH7 	Rebar Option Rebar Code Rebar Code Rebar Option for IIS RC-1 RC-2 CNS560-18 ASTM Slab Beam Girder Column SS Shear Wall Basement Wall Stair Stair Stair Slab Table SSA 2018 ASTM BS EN IS UNI SS SNE EN US.C(US) U.S.C(US) U.S.C(SI) SNI SNI STAIR SANI STAIR SANI SANI STAIR SANI SANI STAIR SANI SA	Spacing List

- 24 -

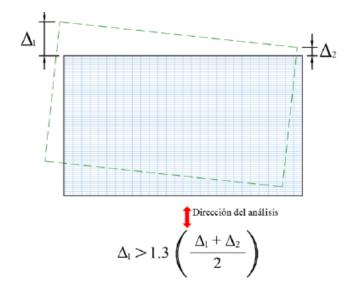
Thank you

Appendix 01


NTC & NMX 2023

Revised provisions (reflected to midas Gen)

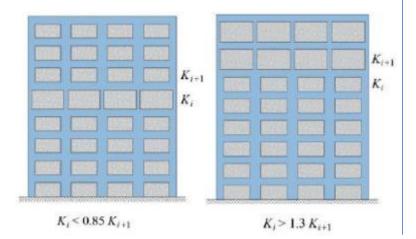
Torsional Irregular Check (NTC 2023)


Irregular

5.2.1.1 It will be considered that a structure is irregular in torsion when in any story there is a point with a lateral displacement that exceeds in more than 15% the average lateral displacement of the extreme points of the story in the analysis direction.

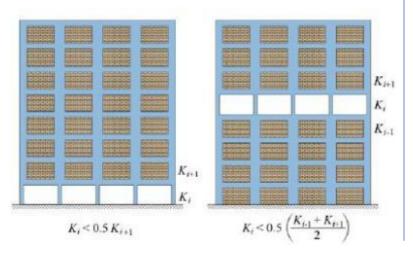
Strongly Irregular

5.2.2.1 A structure is strongly irregular in torsion when in any story there is a point with a lateral displacement that exceeds in more than 30% the average lateral displacement of the extreme points of the story in the analysis direction.


PBE

5.5.3 If in any story there is a point with a lateral displacement that exceeds in more than 40% the average lateral displacement of the extreme points of the story in the analysis direction, a non-linear time history analysis must to be performed as a review of the structure regardless of his height in order to verify the allowable drift indicated in 4.3 and reduced by 50%.

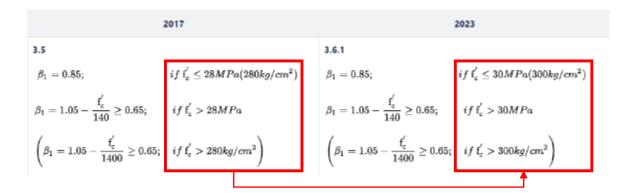
Stiffness Irregular Check (NTC 2023)


Irregular

5.3.2.1 A structure will be considered as Irregular in elevation due to sudden changes in lateral stiffness in height when the lateral stiffness of a story is 15% less than the lateral stiffness of the story immediately above or 30% greater than the stiffness of the story immediately above.

Strongly Irregular

5.3.3.1 A structure will be considered as strongly irregular due to sudden reductions in lateral stiffness, that is when the lateral stiffness of a story is less than 50% of the lateral stiffness of the story immediately above or less than 50% of the lateral stiffness average of the stories immediately below and above a story.

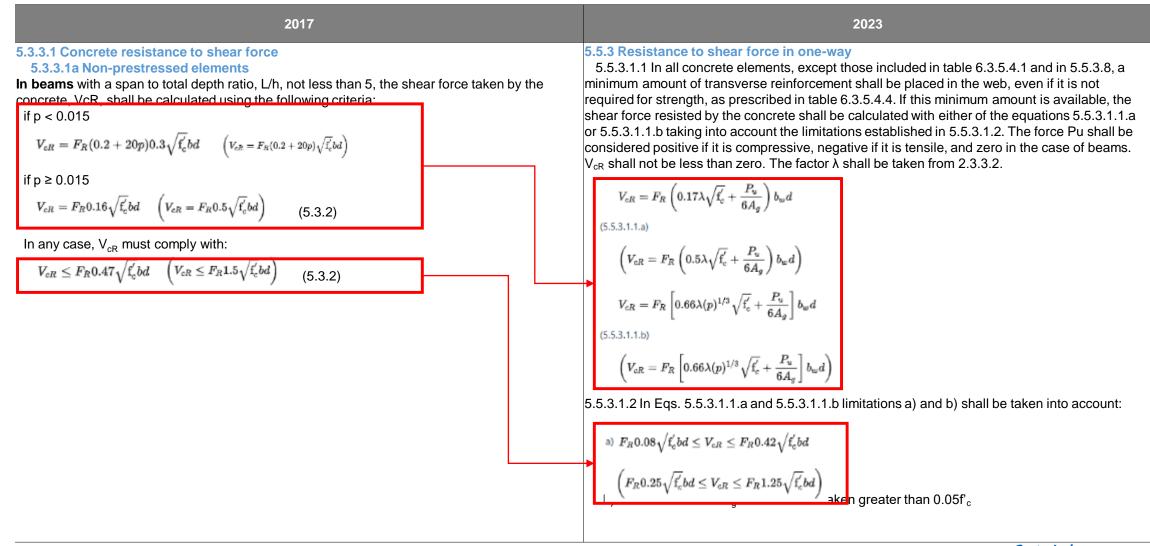


PBE

5.6.3 If the lateral stiffness of any stroy is less than 40% of the lateral stiffness of the story immediately above it or less than 40% of the average lateral stiffness of the stories immediately below and above the story, a non-linear time history analysis must to be performed as a review of the structure regardless of his height in order to verify that at the story with abrupt reduction in lateral stiffness and all stories below the structure will have linear behavior under established ground accelerations according to 7.4.1.

Added the Mexican design code (NTC 2023)

• Changed the reference 'f' value to apply to '61' formula.: 28MPa \Rightarrow 30MPa



• Changed a limitation formula for design shear force.

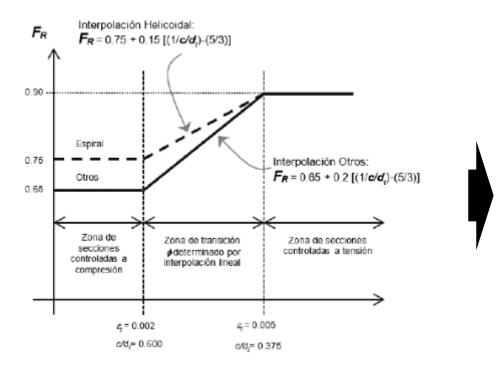
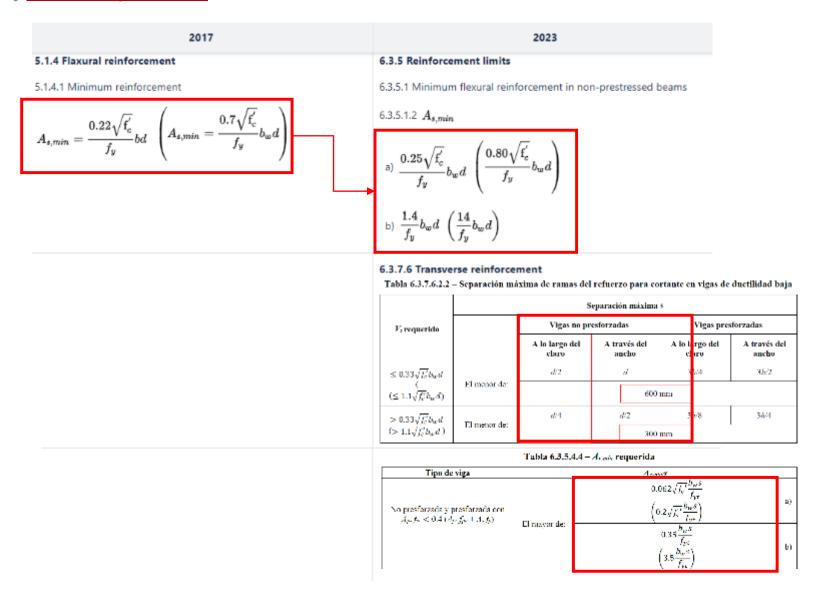
2017	2023
5.3.4 Limitation for design shear force	5.5.2 Sizing and limits on material strength
In no case shall the design shear force, $V_{u'}$ be allowed to exce following values:	seed the 5.5.2.2 The cross-section dimensions shall be selected to comply with Eq. 5.5.2.2:
a) In beams $V_u < F_R 0.8 \sqrt{ extbf{f}_c'} b d$ (5.3.27)	$V_{m{u}} \leq F_R \left(V_c + 0.66 \sqrt{ ext{f}_c'} b_w d ight)$ (5.5.2.2)
$\left(V_u < F_R 2.5 \sqrt{{ m f}_c'} bd ight)$	$\left(V_u \leq F_R \left(V_c + 2.2 \sqrt{\mathbf{f}_c'} b_w d ight) ight)$
, , ,	

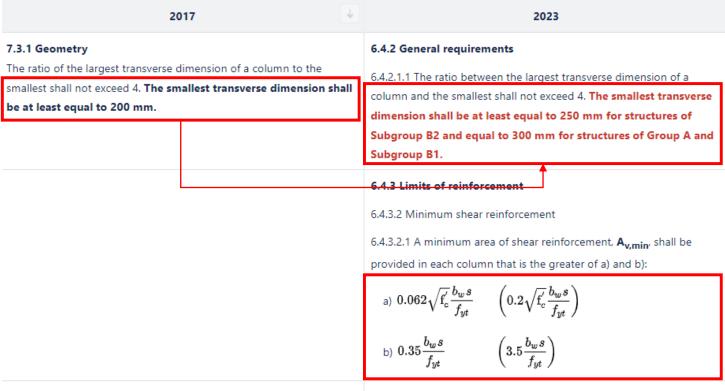
Added the Mexican design code (NTC 2023)

Changed a formula for a concrete shear resistance.

Added the Mexican design code (NTC 2023)

Changed a formula to calculate F_R : Calculating Fr by ε_t instead of c/d_t

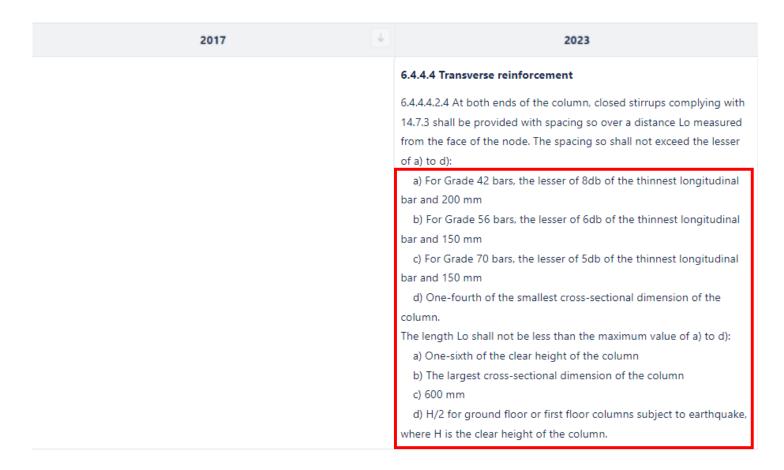




Tabla 3.8.2.2 – Valores del factor de resistencia F_R para momento, fuerza axial, o momento con fuerza axial

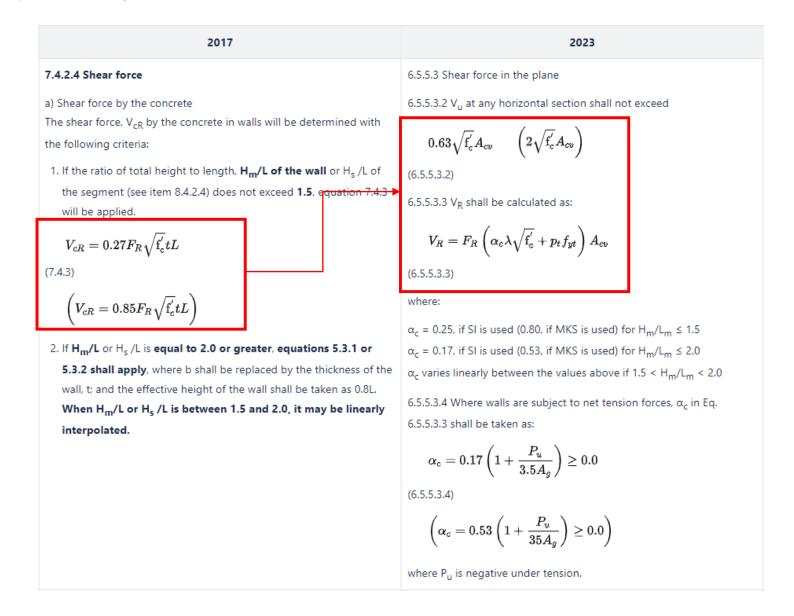
		F_R						
Deformación unitaria	Clasificación	Tipo de refuerzo transversal						
neta de tensión ε _t		Refuerzo helicoidal (zunchos) con 14.7.4	Otros					
$\epsilon_{t} \leq \epsilon_{ty}$	Controladas por compresión	0.75	a)	0.65	b)			
$\epsilon_{ty} < \epsilon_t < \epsilon_{ty} + 0.003$	Transición	$0.75 + 0.15 \frac{\left(\epsilon_t - \epsilon_{ty}\right)}{\left(0.003\right)}$	c)	$0.65 + 0.25 \frac{\left(\varepsilon_t - \varepsilon_{ty}\right)}{(0.003)}$	d)			
$\epsilon_r \ge \epsilon_{ty} + 0.003$	Controlada por tensión	0.90	e)	0.90	f)			

Beam design of low ductility structure

Column design of low ductility structure - 1



6.4.4.4 Transverse reinforcement


Tabla 6.4.4.4.5.1 – Separación máxima del refuerzo por cortante en columnas de estructuras de ductilidad baja

		Separación máxima, s	
V_i requerido		Columnas no presforzadas	Columnas presforzadas
$\leq 0.33\sqrt{f_c'}b_wd$	La menor	<i>₫</i> /2	3h/4
$\left(1.1\sqrt{f_c'}b_wd\right)$	de:	600 mm	
$> 0.33\sqrt{f_c'}b_wd$	La menor	d/4	3h/8
$\left(1.1\sqrt{f_c'}b_wd\right)$	de:	300 mm	

Column design of <u>low ductility structure</u> - 2

Wall design of <u>low ductility structure</u> - 1

Wall design of <u>low ductility structure</u> - 2

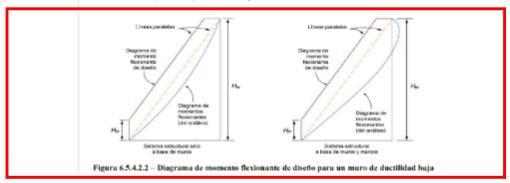


Tabla 6.5.3.2 – Espesor mínimo de muros macizos

Tipo de muro		Espesor mínimo t	
De carga ^[1]	El monon dos	140 mm	a)
De carga	El mayor de:	0.06 veces la altura no restringida lateralmente	b)
De relleno (no de carga)	El mayor de:	100 mm	c)
	ra mayor de.	0.04 veces la altura no restringida lateralmente	d)
En muros en contacto con el terreno y cimentaciones		200 mm	e)

^[1] Para ser diseñados con el método simplificado de 6.5.5.2.

6.5.4.2.2 En muros en que $H_m/L \ge 2$ se considerará al momento flexionante de diseño a lo largo de Hcr con un valor constante e igual al momento Mu obtenido del análisis en la base del muro. La altura crítica Hcr será igual al valor mayor de L o $M_u/4V_u$. A partir de la altura del muro. Hcr. se usará un diagrama de momentos flexionantes lineal tal que sea paralelo a la línea que une los momentos calculados en la base y en la punta del muro (fig. 6.5.4.2.2). En edificios con muros perimetrales de cimentación, se considerará el momento flexionante de magnitud constante a lo largo del primer nivel del sótano y de la altura crítica. Hcr. medida desde el desplante del muro en la parte superior del cajón hacia arriba.

▲ Go to Index

Wall design of <u>low ductility structure</u> - 3

2017

1

2023

7.4.3.2

b) Shear force taken by the web steel

The amount of reinforcement parallel to the direction of the design shear force, p_{m_ℓ} shall be calculated using the expression

$$p_m = \frac{V_u - V_{cR}}{F_R f_v A_{cm}}$$

(7.4.4)

and that of the reinforcement perpendicular to the design shear force, p_{rv}

$$p_n = 0.0025 + 0.5 \left(2.5 - \frac{H_m}{L} \right) (p_m - 0.0025)$$

(7.4.5)

where:

$$p_m = rac{A_{vm}}{s_m t}; \quad p_n = rac{A_{vn}}{s_n t};$$

c) Minimum reinforcement, spacing and anchoring of the reinforcement

The reinforcement quantities p_m and p_n will not be less than 0.0025.

6.5.6 Reinforcement limits

6.5.6.1 In case of

$$V_{\rm u} \leq 0.04 F_{\rm R} \alpha_{\rm c} \lambda \sqrt{{\rm f}_{\rm c}'} A_{\rm cu} \, \left(V_{\rm u} \leq 0.13 F_{\rm R} \alpha_{\rm c} \lambda \sqrt{{\rm f}_{\rm c}'} A_{\rm cu}\right)$$

Tabla 6.5.6.1 – Refuerzo mínimo para muros con $V_u \le 0.04 F_R \alpha_c \lambda \sqrt{f_c'} A_{cv} \left(V_u \le 0.13 F_R \alpha_c \lambda \sqrt{f_c'} A_{cv} \right)$

Tipo de muro	Tipo de refuerzo no presforzado	Tamaño de barra o alambre	fy, MPa (kg/cm²)	p∉mínima (longitudinal) ^[1]	p₁mínima (transversal)
	Barras corrugadas	≤ No. 5 > No. 5	≥ 420 (4 200) ≥ 420 (4 200)	0.0012 0.0015	0.0020 0.0025
Colado en sitio	Alambres soldados, corrugados	≤ 16 mm	Cualquier	0.0012	0.0020

6.5.6.2 In case of

$$V_u > 0.04 F_R \alpha_c \lambda \sqrt{f_e'} A_{cv} \left(V_u > 0.13 F_R \alpha_c \lambda \sqrt{f_e'} A_{cv} \right)$$

a) p_I shall be the greater of the value calculated from Eq. 6.5.6.2 and

0.0025, but need not exceed pt calculated to resist shear from 6.5.5.3.3

$$p_l \ge 0.0025 + 0.5 \left(2.5 - \frac{H_m}{L_m}\right) (p_t - 0.0025)$$

(6.5.6.2)

b) p_t ≥ 0.0025.

Wall design of <u>low ductility structure</u> - 4

Joint design of <u>low ductility structure</u>

: Applied the joint design under low ductility system.

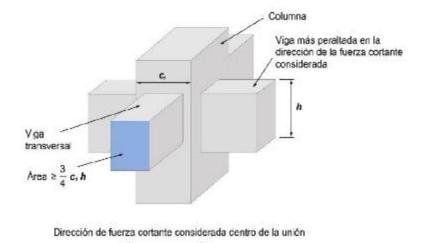
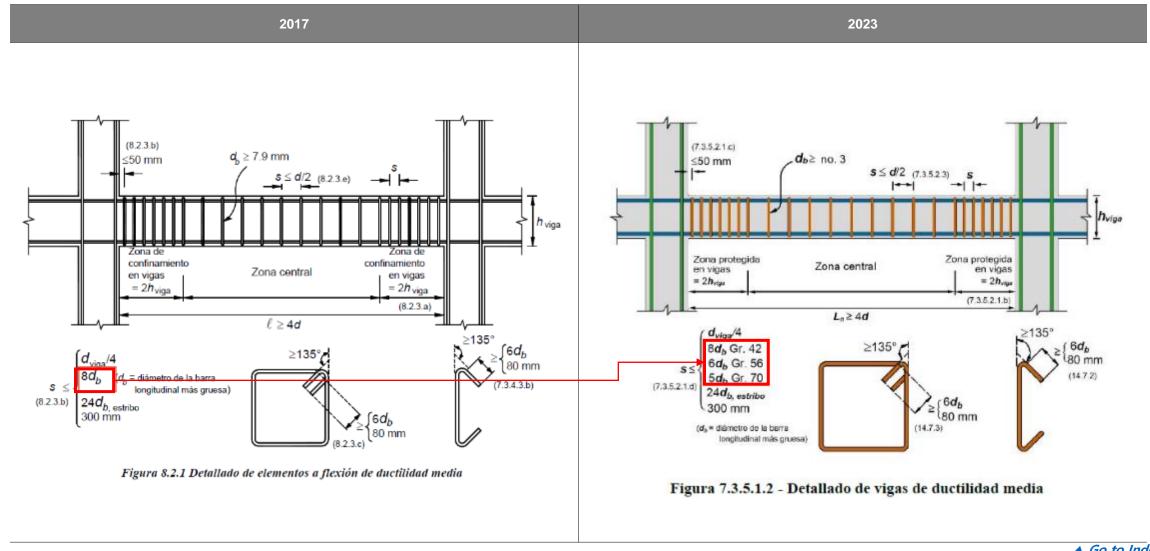
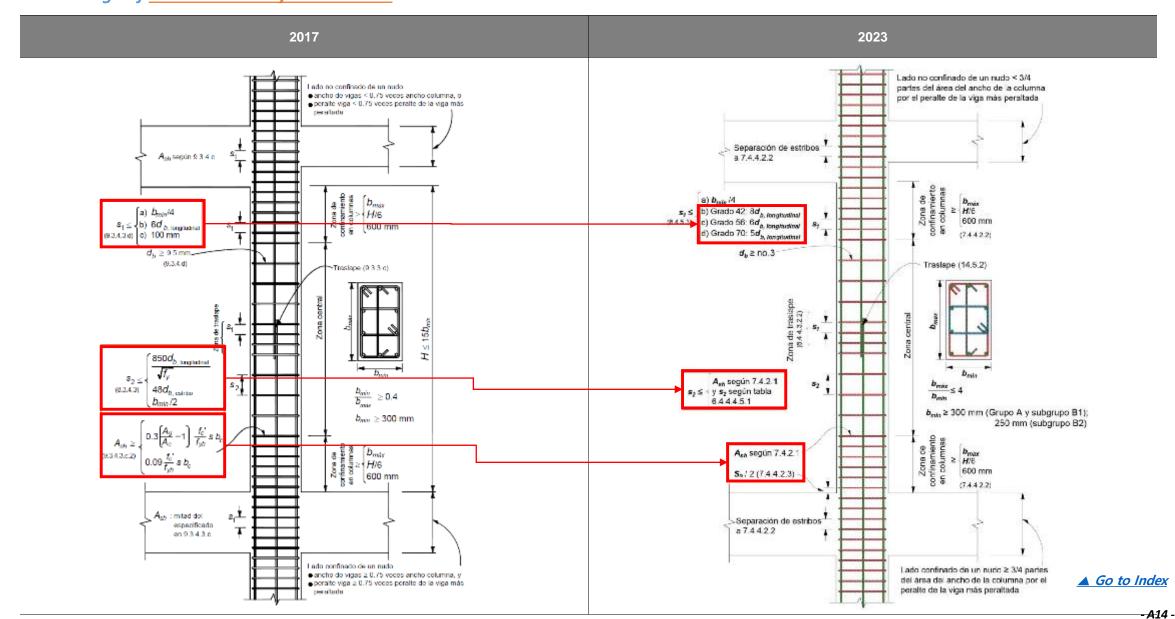
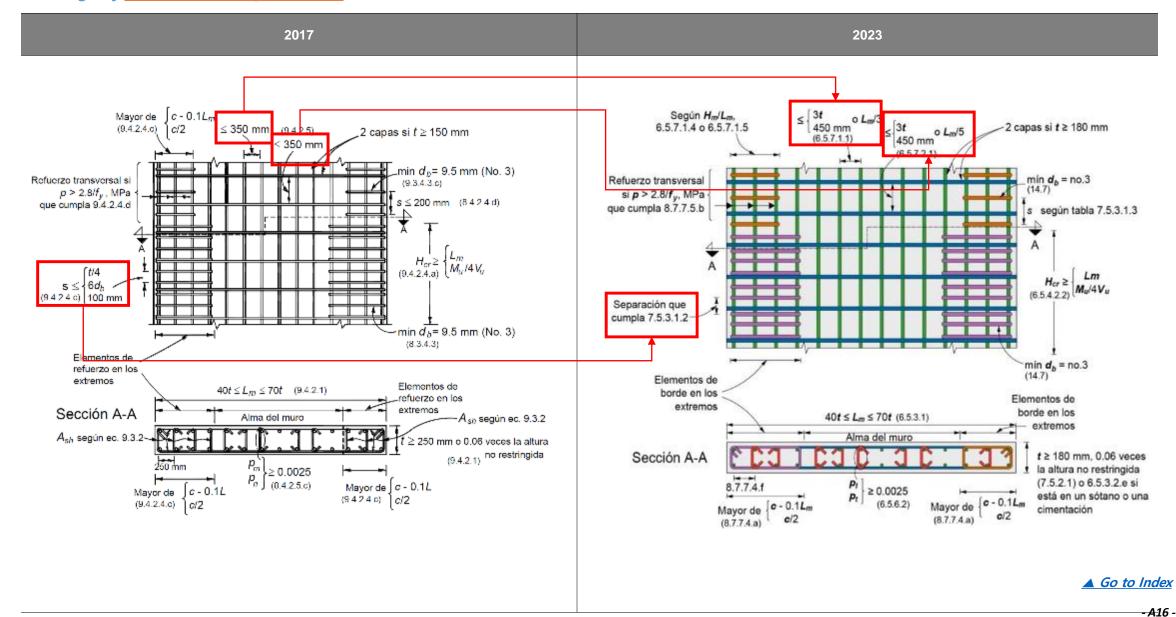




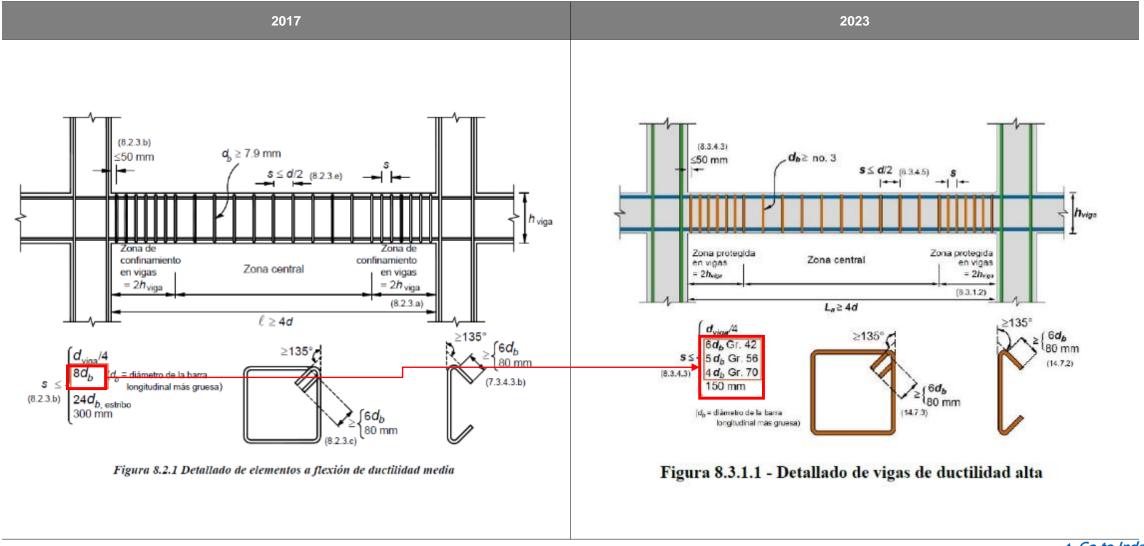
Figura C6.9.2 – Sección minima de una viga transversal para propósitos de confinamiento de la unión viga-columna (adaptada de ACI CODE-318-19)

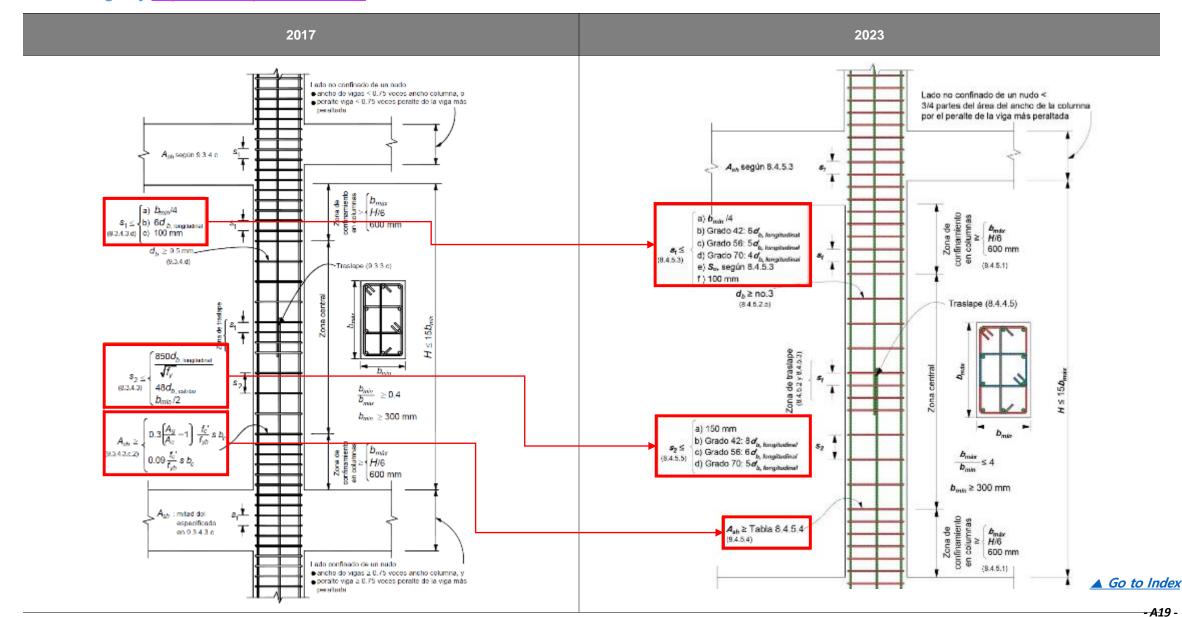
Beam design of medium ductility structure


Column design of <u>medium ductility structure - 1</u>

• Column design of medium ductility structure - 2

2017	2023
	7.4.4.2.2 Closed stirrups complying with 14.7.3 shall be provided at both ends of the column with spacing so over a distance Lo measured from the face of the node. Spacing so shall not exceed the lesser of a) to d):
	a) For Grade 42 bars, the lesser of 8db of the thinnest longitudinal bar and 200 mm b) For Grade 56 bars, the lesser of 6db of the thinnest longitudinal bar and 150 mm c) For Grade 70 bars, the lesser of 5db of the thinnest longitudinal bar and 150 mm d) One-fourth of the smallest cross-sectional dimension of the column. The length Lo shall not be less than the maximum value of a) to d): a) One sixth of the free height of the column b) The largest dimension of the cross section of the column c) 600 mm d) H/2 for ground floor columns or the first level subject to earthquakes, where H is the free height of the column.
8.3.2 Minimum flexural strength of columns 8.3.2.1 General procedure The flexural strengths of columns at a node must satisfy equation 8.3.1	7.4.2.2 Minimum flexural strength of columns 7.4.2.2 The flexural strengths of the columns shall satisfy Eq. 7.4.2.2.2: ΣMnc ≥ 1.2 ΣMnb (7.4.2.2.2)
ΣMe ≥ 1.2ΣMg (8.3.1)	ZM IIC = 1.2 ZM IID (1.4.2.2.2)
where: Σ Me adds to the node span of the moments of resistance in the analysis plane calculated with a resistance factor equal to one, of the columns that reach that node; the moment of resistance will be that which corresponds to the factored axial load that, in an interaction diagram of the column, produces the lowest moment of resistance. When calculating the moments of resistance in the analysis plane, the moments that act in the perpendicular plane will not be considered; and Σ Mg adds to the node span of the moments of resistance calculated with a resistance factor equal to one, of the beams that reach the node. The above sums must be made so that the moments of the columns oppose those of the beams The condition must be met for both directions in which the earthquake can act.	node. In the case of monolithically cast beams with slabs, it will not be necessary to consider the contribution of the slab reinforcement steel to the flexural strength. The flexural strength of columns and beams shall be calculated with a steel stress of fy and a resistance factor equal to 1.0. The above sums must be made so that the moments of the
	▲ Go to Index


Wall design of medium ductility structure


Joint design of medium ductility structure

2017	2023
	7.9.2 Beam-column connections
	7.9.2.1 Beam-column connections shall satisfy the detailing requirements of 6.9.7.1.1.2 and 6.9.7.1.1.3. and 7.9.2.2 through
	7.9.2.7 Shear strength of beam-column connections
	7.9.2.7.1 Vu of the node shall be determined in accordance with 8.5.5.1. (Same as Low Ductility System)
	7.9.2.7.2 VR of a beam-column connection shall be calculated in accordance with 6.9.5.2.

Beam design of <u>High ductility structure</u>

Column design of <u>High ductility structure - 1</u>

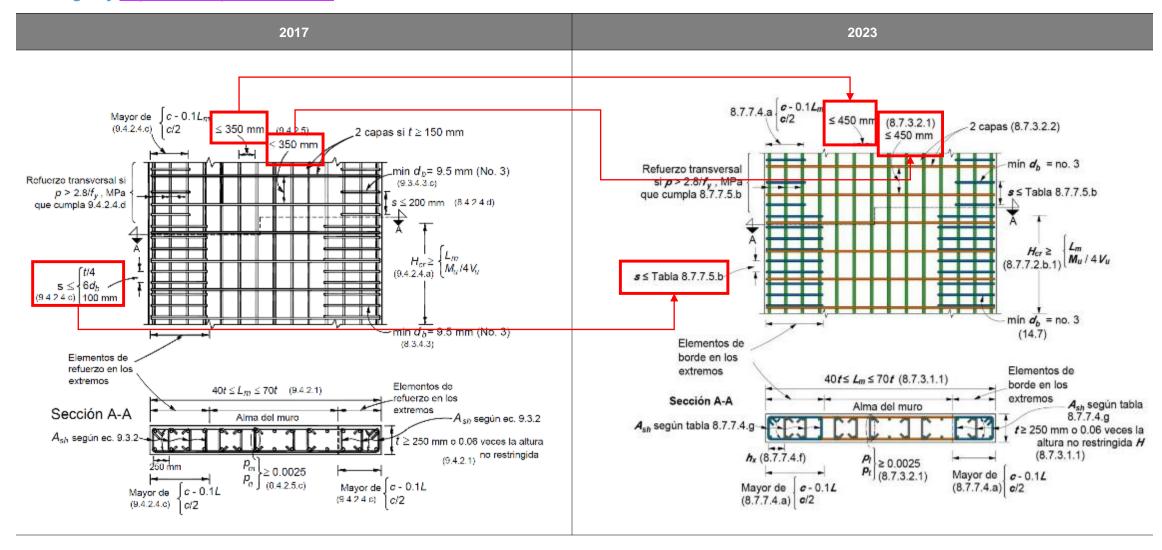
• Column design of <u>High ductility structure - 2</u>

Column design of <u>High ductility structure - 2</u>							
2017	20	023					
	8.4.5.3 The spacing of transverse reinforcement shall not exa.) One-fourth of the smallest transverse dimension of the b) 6db of the thinnest longitudinal bar of the primary flexur c) 5db of the thinnest longitudinal bar of the primary flexur d) 4db of the thinnest longitudinal bar of the primary flexur e) or according to Eq. 8.4.5.3: $s_o = 100 + \frac{350 + h_z}{3}$ The value of so in Eq. 8.4.5.3 shall not exceed 150 mm and	cceed the less element al reinforcemal al reinforcemal al reinforcem	ent Grade 42 ent Grade 56 ent Grade 70	n.			
	8.4.5.4 The amount of transverse reinforcement shall be as concrete strength and the kn factor on the confinement effect 8.4.5.4.b, respectively:						
	$k_f=rac{f_c^{'}}{175}+0.6\geq 1.0$ (8.4.5.4.a)						
	$k_n = \frac{n_l}{n_l - 2} \tag{8.4.5.4.b}$	Refuerzo transversal	Condiciones	Ecune	ión apticable		
	where nl is the number of bars or bundles of longitudinal reinforcement around the perimeter of the core of	Anisõe para estribos	$P_n \le 0.3 M_g G' \text{ y}$ $f_n' \le 70 \text{ MPn (700 }$ $kg/\text{cm}^2)$	El mayor de a) y b):	a) $0.3 \left(\frac{A_3}{A_{ch}} - 1 \right) \frac{f_c^2}{f_{fc}^2}$ b) $0.09 \frac{f_c^2}{A_{ch}}$		

where nl is the number of bars or bundles of longitudinal reinforcement around the perimeter of the core of a column with rectangular stirrups that are laterally supported by stirrup corners or by standard 135-degree hooks.

Refuerzo transversal	Condiciones	Ecunción aplicable					
Anishe para	$P_a \le 0.3 M_g f_c' \text{ y}$ $f_c' \le 70 \text{ MPn (700 }$ kg/cm^2)	El mayor de a) y b):	a) $0.3 \left(\frac{A_{\delta}}{A_{ch}} - 1 \right) \frac{f_{c}^{2}}{f_{fc}}$				
estribos rectangulares	P _o > 0.3A ₀ f _e ' o f _e ' > 70 MPa (700 kg/cm ²)	El mayor de a), b) y c):	b) $0.09 \frac{k'}{f_{fl}}$ c) $0.2k_f k_n \frac{P_o}{f_{fr} k_m}$				
p ₂ para refuerzo	$\begin{split} P_n &\leq 0.3 A_p f_n^{\prime\prime} \text{ y} \\ f_n^{\prime\prime} &\leq 70 \text{ MPa (700)} \\ &\text{kg/cm}^2) \end{split}$	El mayor de d) y e):	d) $0.45 \left(\frac{A_2}{A_{ch}} - 1\right) \frac{d}{f_{pl}}$				
helicoidal o estribos circulares	$P_0 > 0.3 A_0 f_0^2$ o $f_0^2 > 70 \text{ MPa } (700 \text{ kg/cm}^2)$	El mayor de d), e) y f):	e) $0.12 \frac{f_0^2}{f_{yt}}$ f) $0.35 k_f \frac{r_0}{f_{yt} A_{ch}}$				

▲ Go to Index


It will not be necessary to comply with equation 9.3.1 at the roof nodes.

Column design of <u>High ductility structure - 3</u>

Column design of <u>Hi</u> g	gh ductility structure - 3	
	2017	2023
		8.4.5.5 Beyond the length calculated in accordance with 8.4.5.1, helical reinforcement comply with 14.7.4 or stirrups and clips in accordance with 14.7.3 and 14.7.2, respectively, shall be preded. The spacing s shall not exceed the lesser of a) through d), unless a greater amount of traverse reinforcement is required in accordance with 8.4.4.5 and 8.4.6: a) 150 mm b) 8db of the thinnest longitudinal bar, for Grade 42 bars c) 6db of the thinnest longitudinal bar, for Grade 56 bars d) 5db of the thinnest longitudinal bar, for Grade 70 bars.
		8.4.5.1 The minimum confining transverse reinforcement specified in 8.4.5.2 to 8.4.5.4 shall be provided in a length lo at both ends of the member and on both sides of any section where longitudinal reinforcement is likely to yield in flexure under lateral displacements in the inelastic range of behaviour. The length lo shall be the greater of a) to c): a) The greatest depth of the column at the node face or at the section where longitudinal reinforcement is likely to yield in flexure (see Fig. 8.4.1) b) H/6, where H is the clear height of the column c) 600 mm.
9.3.2 Minimum flexural str	rength of columns	8.4.3 Minimum flexural strength of columns
The flexural strengths of c	columns at a node must satisfy equation 9.3.1	8.4.3.2 The flexural strengths of the columns shall satisfy Eq. 8.4.3.2:
ΣMe ≥ 1.2ΣMg	(9.3.1)	$\Sigma Mnc \ge 1.2 \ \Sigma Mprb$ (8.4.3.2)
where:		where:
esistance factor equal to obe that which corresponds, produces the lowest mor analysis plane, the mome ΣMg adds to the node s al to one, of the beams the	s to the factored axial load that, in an interaction diagram of the column ment of resistance. When calculating the moments of resistance in the nts that act in the perpendicular plane will not be considered; and span the moments of resistance calculated with a resistance factor equat reach the node.	in the analysis plane, calculated at the node span. The nominal resisting moment shall be that corresponding to the factored axial load that, in an interaction diagram of the column, produce the smallest resisting moment in the analysis direction, using a resistance factor equal to 1.0. **Emprb** sums to the node span the probable flexural strengths of the beams** reaching the notation in the case of beams cast monolithically with slabs, when the slab is in tension due to moment at the node face, the slab reinforcing steel within the effective width established in 8.5.2.2 shall be considered to contribute to Mprb if the slab reinforcing steel can develop its yield strength.
	made so that the moments of the columns oppose those of the beams of the both directions in which the earthquake can act.	s. the critical section by bending. The flexural strength of the beams shall be calculated with a st stress of 1.25 fy and a resistance factor equal to 1.0. The above sums must be made so that the moments of the columns oppose those of the bear
14 101 4.1		

The condition must be met for both directions in which the earthquake can act.

Wall design of <u>High ductility structure - 1</u>

• Wall design of <u>High ductility structure - 2</u>

2017	2023						
	8.7.4 Design Shear Force						
	8.7.4.3.2 If the factored shear orce of the wall due to the hori plified by the product Ω_v ω_v , where ω_v is the product ω_v and ω_v are ω_v .	zontal component	of the earthquake, calcul	lated according to			
	8.7.4.4.3.3 Ωv and ωv shall be ulated as Mpr/Mu at the critical						
		Tab	la 8.7.4.3.3 – Factores Ω, y ω,	,			
		Condición	Ω_v	_{Фт} [1]			
		$H_{mic}/L_M \le 1.0$	1.0				
		$1.0 \le H_{mse}/L_{m} \le 2.0$	Se permite la interpolación lineal 1.0 y 1.5	1.0			
		$H_{max}/L_m \ge 2.0$	1.5	$0.8 + 0.13 H_{\rm n}^{1/3}$			
	[1] H _n is the height of the structor of the structure is the level who				ng system, in meters. The ba		
	8.7.4.3.4 The product $\Omega_v \omega_v$ sha	all not exceed 2.0.					

Joint design of High ductility structure

2017	2023							
	8.5.2 General requirements							
	8.5.2.1 The forces in the shall be calculated assun					t of the beams at the node fa		
	8.5.5 Shear strength res	_			*			
		values of bea d <u>the column s</u>	m tension a shear consi	nd compression forces	determined in beam flexural s	<u> </u>		
		Columna	Viga en la dirección de V _{ij}	Confinamiento por vigas transversales de acuerdo con 8.5.5.3	V_{R_0}			
			Continua o cumple con	Confinada	$\frac{1.7F_R\sqrt{f_c'}A_i}{\left(5.5F_R\sqrt{f_c'}A_j\right)}$			
		Continua o	8.5.5.3.a y 8.5.5.3.b	No confinada	$1.3F_R\sqrt{f_c'}A_i$ $\left(4.5F_R\sqrt{f_c'}A_i\right)$			
		6.9.5.2.3		Confineds	$1.3F_R\sqrt{f_c^2}A_f$			

 $\left(4.5F_{B}\sqrt{f_{c}^{T}}A_{i}\right)$

 $1.0F_R\sqrt{f_c'}A_f$

 $\left(3.5F_{B}\sqrt{f_{z}^{2}}A_{j}\right)$ $1.3F_R\sqrt{f_c'}A_f$

 $\left(4.5F_R\sqrt{f_c^2}A_f\right)$

 $1.0F_R\sqrt{f_c'}A_f$

 $\left(3.5F_{\rm R}\sqrt{f_c^T}A_f\right)$

 $1.0F_R\sqrt{f_c^{\prime\prime}}A_f$

 $\left(3.5F_B\sqrt{f_c^T}A_f\right)$

 $0.67F_R\sqrt{f_c'}A_j$

 $\left(2.0F_R\sqrt{f_c'}A_f\right)$

Confinada

No confinada

Confinada

No confinada

Confinada

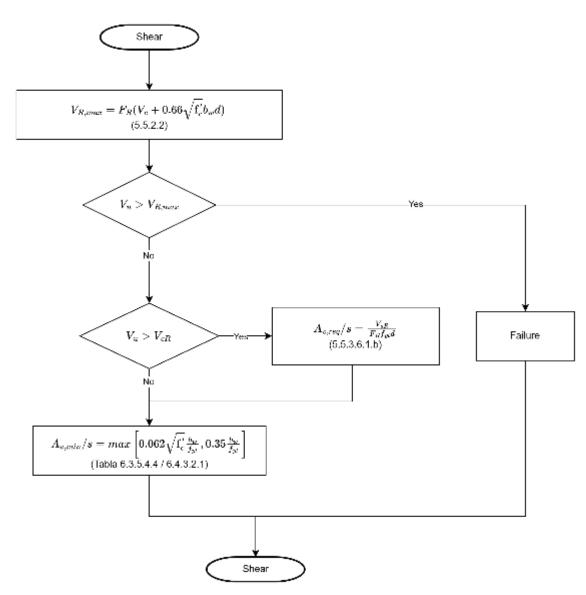
No confinada

Otra

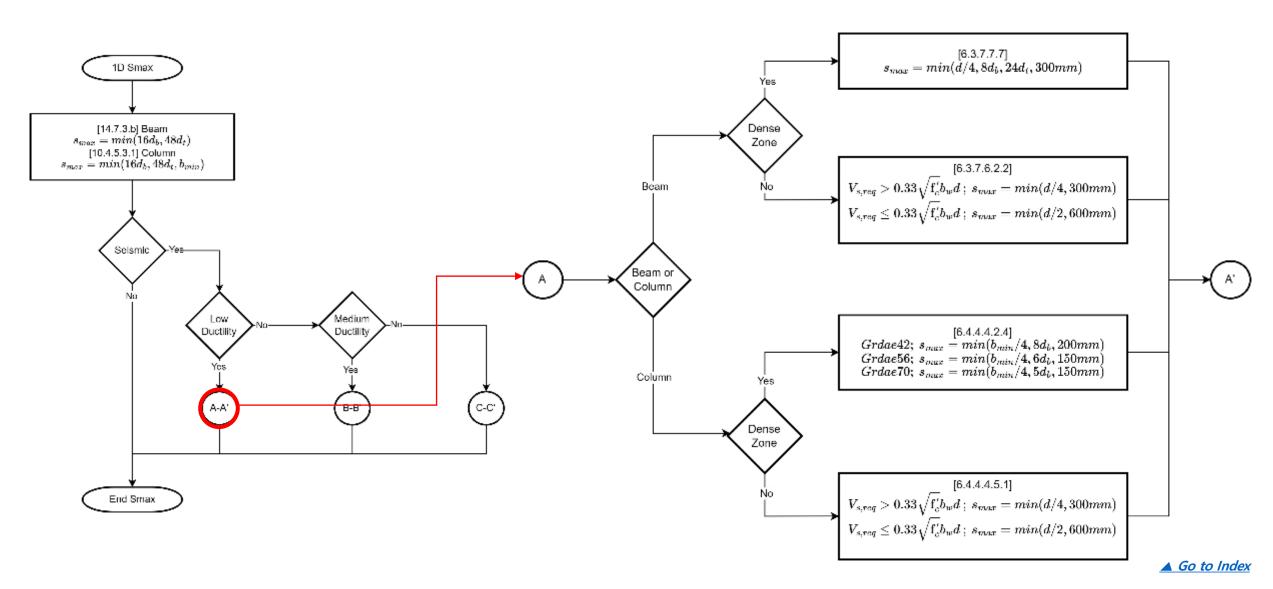
Continua o

eumple con 8.5.5.3.a y

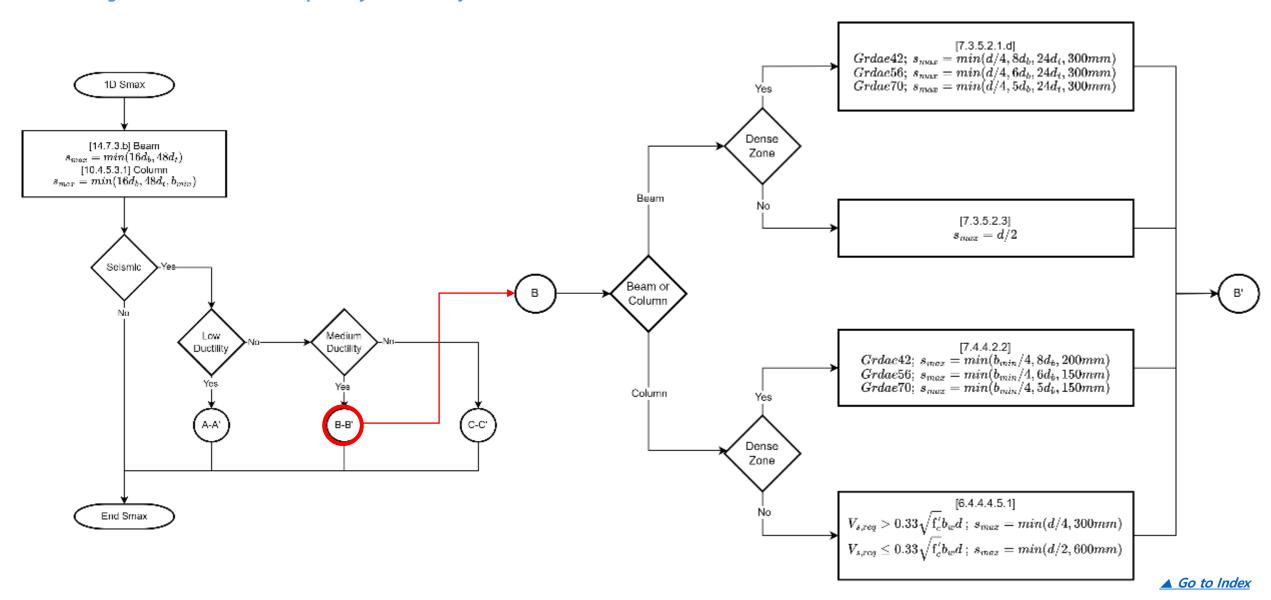
8.5.5.3.b

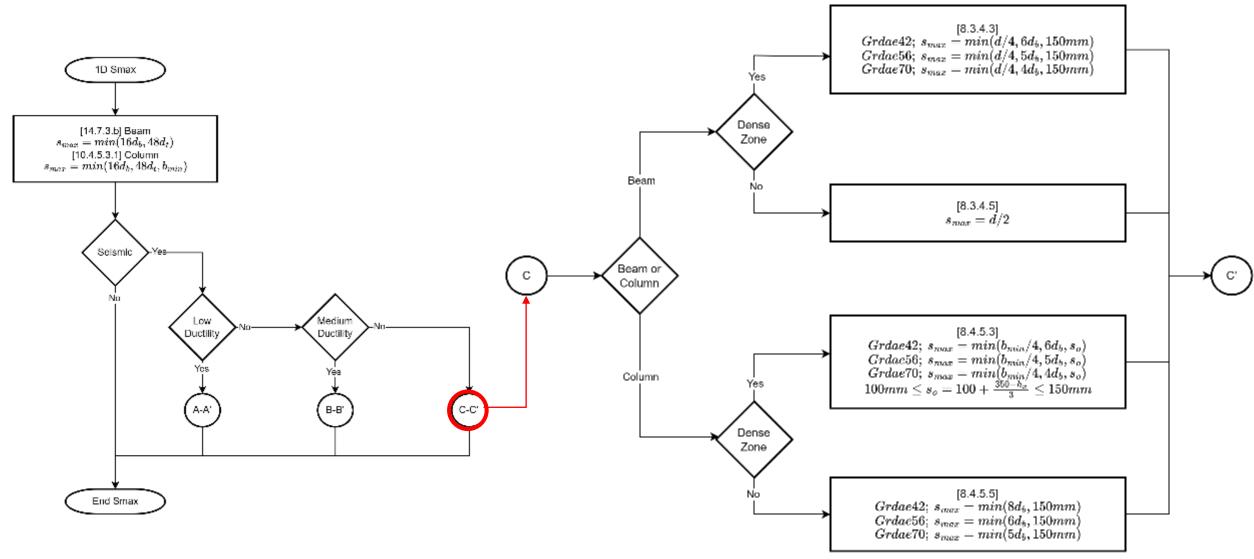

Otra

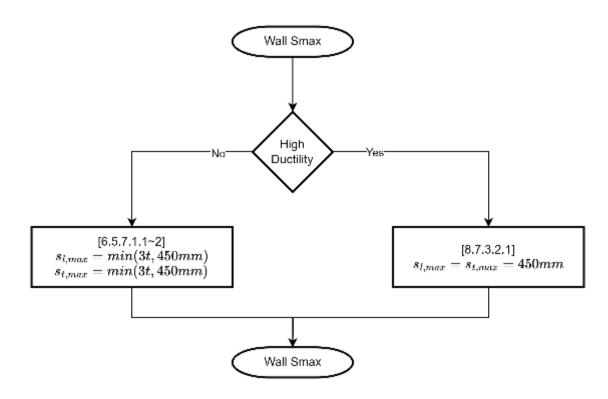
Ofra

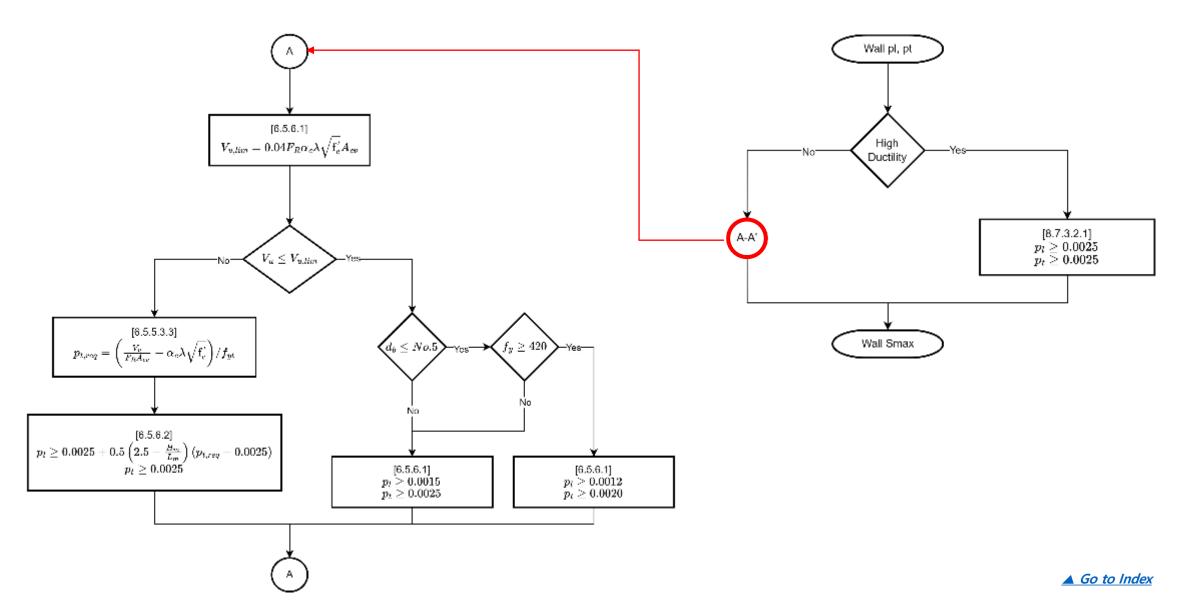

Transverse Rebar Detail

	2017	2023
	5.3.5 Shear reinforcement	14.7.3 Close stirrups
,	5.3.5.1 Reinforcement in beams and columns without prestressing	14.7.3.2 Closed stirrups shall be made of deformed bars with spacings indicated in a) and b):
1	c) If Vu is greater than the value calculated using equation 5.3.4, the spacing of stirrups	a) Clear spacing at least equal to 1.5tmag b) Center spacing not exceeding the lesser of 16db of the longitudinal bar, 48db of the stirrup bar and the distance required according to the type of member (beam, column) and the expected level of ductility (low, medium or high).
_		$s_{max} = min(d_t + 1.5t_{mag}, 16d_b, 48d_t)$


Design Flow Chart → Shear Reinforcement

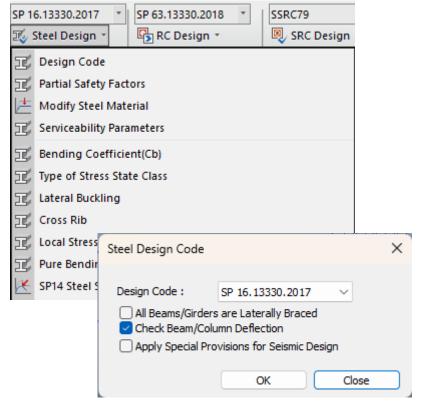

Design Flow Chart \Rightarrow Max. Space of Shear Reinforcement in 1D member - 01


• Design Flow Chart → Max. Space of Shear Reinforcement in 1D member - 02


Design Flow Chart -> Max. Space of Shear Reinforcement in 1D member - 03

• Design Flow Chart $\rightarrow S_{max}$ in Wall Shear Design

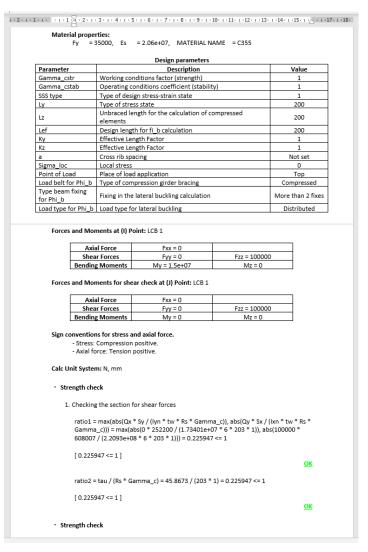
• Design Flow Chart → Rebar Ratio Limit in Wall Design


Appendix 02

Russian code in midas Gen

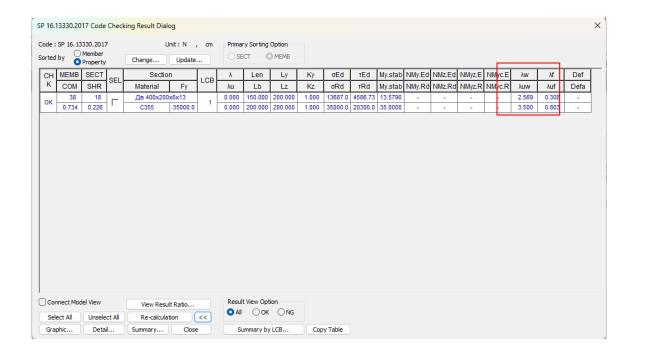
- Added design of steel according to SP 16.13330.2017
 - 1. Calculation of section strength
 - 2. Calculation of the stability of a plane bending form
 - 3. Calculation of stability of off-centre compressed elements
 - 4. Check of local stability of webs and flanges of the cross section
- Added design of reinforced concrete structures according to SP 63.13330.2018
 - 1. Strength check of the normal section of a beam/column element
 - 2. Checking the strength of the inclined section of a beam/column, element against the action of moment and shear force
 - 3. Calculation of crack resistance and crack opening width in the normal section of a beam element
- Special structural requirements are taken into account in the design of structures
 - 1. Added consideration of structural requirements in seismic design according to SP 14.13330.2018
 - 2. Added accounting of responsibility of the structure according to GOST 27751-2014
- Added load combinations according to SP 20.13330.2016
 - 1. Main, special, crane, seismic load combinations
 - 2. Added special load combinations according to SP 296.1325800.2017
- Implemented calculation of the pulsation component of the wind load according to SP 20.13330.2016
 - 1. Calculation of the pulsation force acting on a rigid floor diaphragm
- Added response spectrum according to SP 14.13330.2018
- Added base of materials and profiles for calculation according to Russian code

Added design of steel according to SP 16.13330.2017

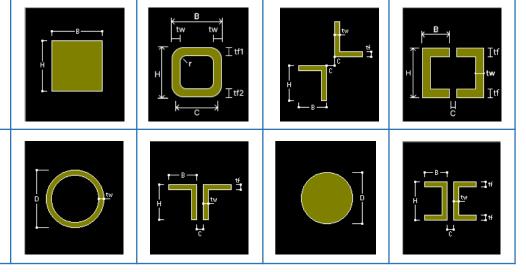

- 1. Calculation of section strength
- 2. Calculation of the stability of a plane bending form
- 3. Calculation of stability of off-centre compressed elements

Dialog box for setting parameters for steel structures calculation according to SP 16.13330.2017

Realised calculation types

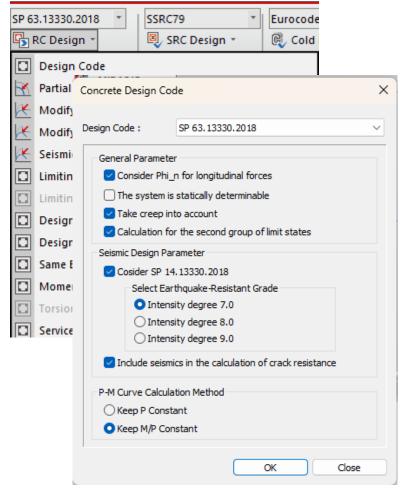

- **Par. 7.1.1** Strength calculation of elements in central tension or compression
- Par. 8.2.1, 8.2.3 Strength calculation of bending elements
- Par. 9.1.1, 9.1.3 Strength calculation of eccentrically compressed and eccentrically tensile elements
- Par. 8.4.1 Calculation of stability of I-beams of class 1: under the action of a moment
- Par. 7.1.3 Calculation of stability of elements of continuous section under central compression
- Par. 9.2.2, 9.2.8, 9.2.9, 9.2.10, 9.2.4 Calculation of stability of elements of continuous section under off-centre compression

Text report in RTF format.


Added design of steel according to SP 16.13330.2017

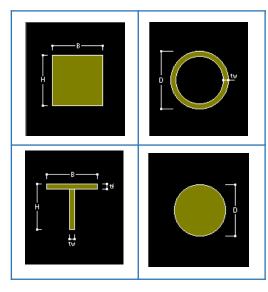
4. Check of local stability of walls and flanges of the cross section

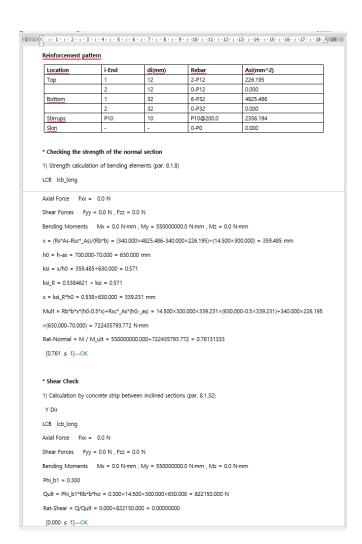
Realised calculation types


- Par. 7.3.2, 7.3.3 Web stability of centrally compressed elements of continuous section
- Par. 8.5.1, 8.2.2, 8.5.3, 8.5.7, 8.5.8 Stability of webs under the action of the moment
- Par. 9.4.2 Stability of web of off-centre compressed elements
- Par. 11.2.2 Web stability calculation of seamless or electrically welded pipes
- Par. 7.3.8 Stability of belt plates (flanges) of centrally compressed elements of continuous section
- Par. 8.5.18, 8.5.19 Stability of compressed beam flanges
- Par. 9.4.7 Stability of girdles (flanges) of off-centre compressed bars

Supported section types for calculation according to SP 16.13330.2017

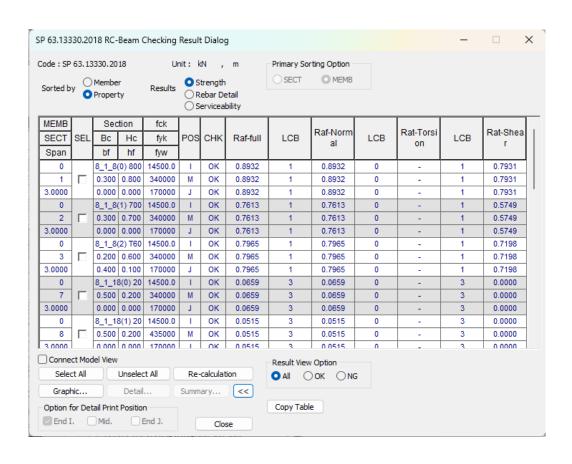
Added design of reinforced concrete structures according to SP 63.13330.2018


- 1. Strength check of the normal section of a beam/column element
- 2. Checking the strength of the inclined section of a beam/column, element against the action of moment and shear force

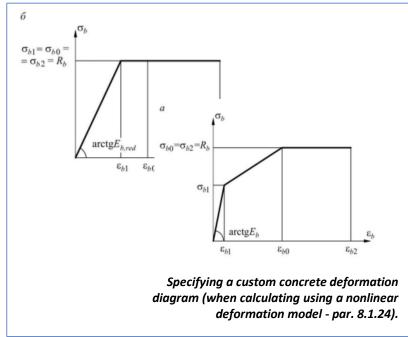

Dialog box for specifying parameters for calculation of reinforced concrete structures according to SP 63.13330.2018

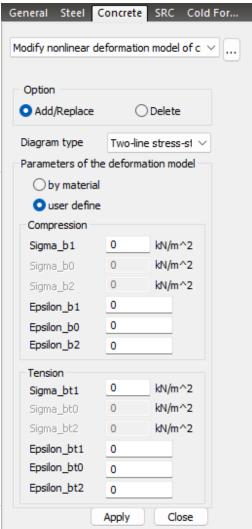
Realised calculation types

- Par. 8.1.8, 8.1.14, 8.1.18, 8.1.19, 8.1.24 Strength of normal section against longitudinal forces and bending moments
- Par. 8.1.33, 8.1.35, 8.1.37, 8.1.38, 8.1.40, 8.1.41,
 8.1.42 Strength of the inclined section under shear force and torque action


Supported section types for calculation according to SP 63.13330.2018

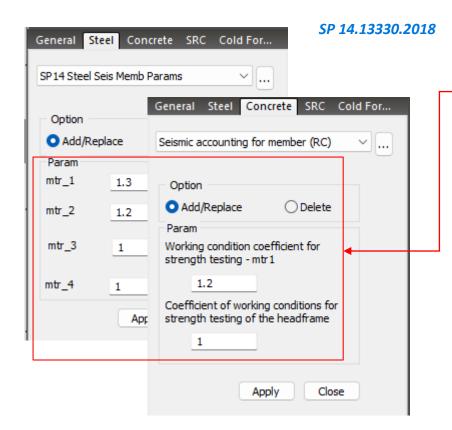
Text report in DOC format.


Added design of reinforced concrete structures according to SP 63.13330.2018


3. Calculation of crack resistance and crack opening width in the normal section of a beam element

Realised calculation types

 Par. 8.2.4 - 8.2.7 - Calculation of crack resistance and crack width in a normal section of a rod element

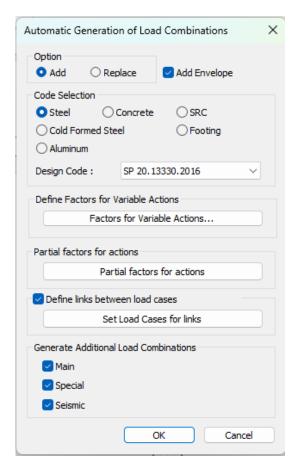


▲ Go to Index

Special structural requirements are taken into account in the design of structures

- 1. Added consideration of structural requirements in seismic design according to SP 14.13330.2018
- 2. Added accounting of responsibility of the structure according to GOST 27751-2014

5.15 When calculating structures for strength and stability, in addition to the coefficients of working conditions accepted in accordance with other current regulatory documents, an additional coefficient of working conditions mtr, determined according to Table 5.4, should be introduced. The mtr coefficient is multiplied by the design resistance of the corresponding material of the structure.


	Load	Cases an	d Factors								
		No	Load Case	Туре	gF	gfa	gN	gFo	dL	Dominace_1	Dominace_2
			loadcase_lon	Constant	1.10000				1.00000		
		-	loadcase_sho	Short-term	1.20000				0.35000		
artial Safety Factors	*	3	seismic	Seismic	1.00000		1.00000	1.00000	0.00000	Г	Г
Reliability coefficient in time-resistance calc			1							1	
Reliability coefficient of responsibility			1								
Working conditions factor (strength)			1								
Operating conditions coefficient (stability)			1								

GOST 27751-2014

10.1 Depending on the class and level of responsibility of structures (see 3.1), reliability coefficients for responsibility should be used in their design, the minimum values of which are given in Table 2.

Added load combinations according to SP 20.13330.2016

- 1. Main, special, crane, seismic load combinations
- 2. Added special load combinations according to SP 296.1325800.2017

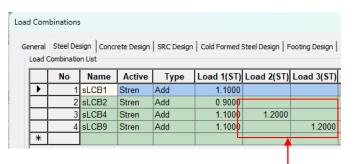
Dialog box for controlling the generation of combinations according to SP 20.13330.2016

SP 20.13330.2016

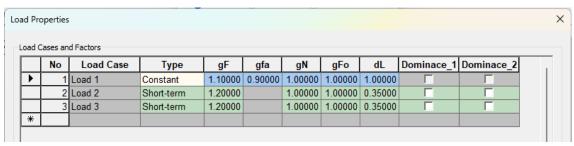
- 6.2 Depending on the load composition to be taken into account, a distinction should be made:
- a) the main load combinations consisting of constant, long-term and short-term loads

$$C_m = P_d + (\psi_{11}P_{11} + \psi_{12}P_{12} + \psi_{13}P_{13} + \dots) + (\psi_{11}P_{11} + \psi_{12}P_{12} + \psi_{13}P_{13} + \dots);$$
(6.1)

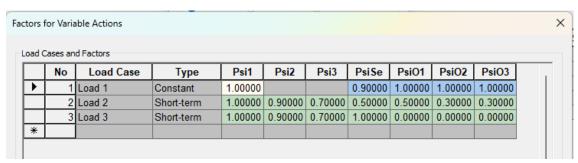
6) special load combinations consisting of constant, long-term, short-term and one of the special loads.

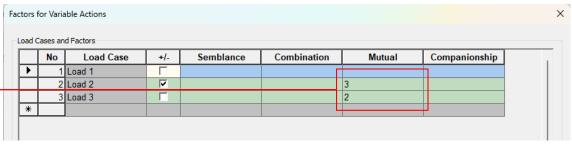

$$C_s = C_m + P_{s'}(6.2)$$

where C_m - load for the main combination;


 C_s - load for a special combination;

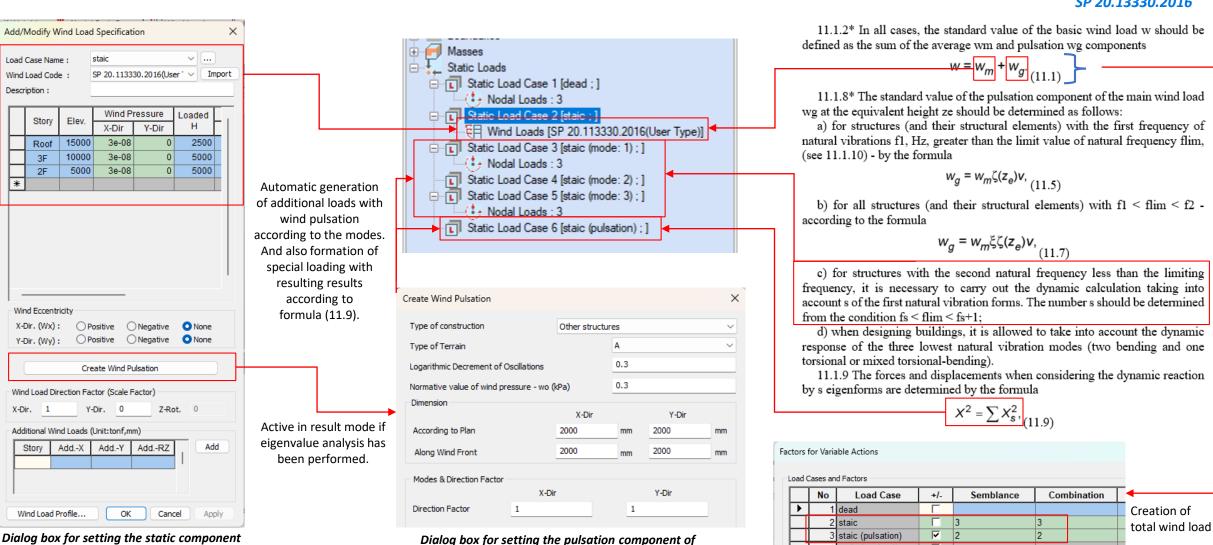
 ψ_{li} (i = 1, 2, 3,...,) - combination coefficients for long-term loads;


 ψ_{ti} (i = 1, 2, 3,...,) - combination factors for short-term loads.


The example establishes that Load 2 and Load 3 are mutually exclusive loads, so they are included in different combinations when forming the combination.

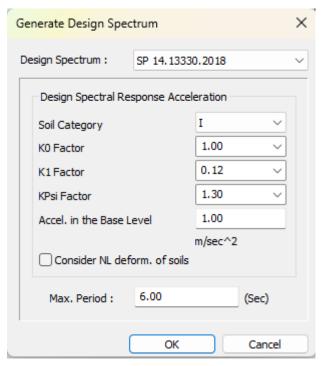
Dialog box for assigning reliability coefficients

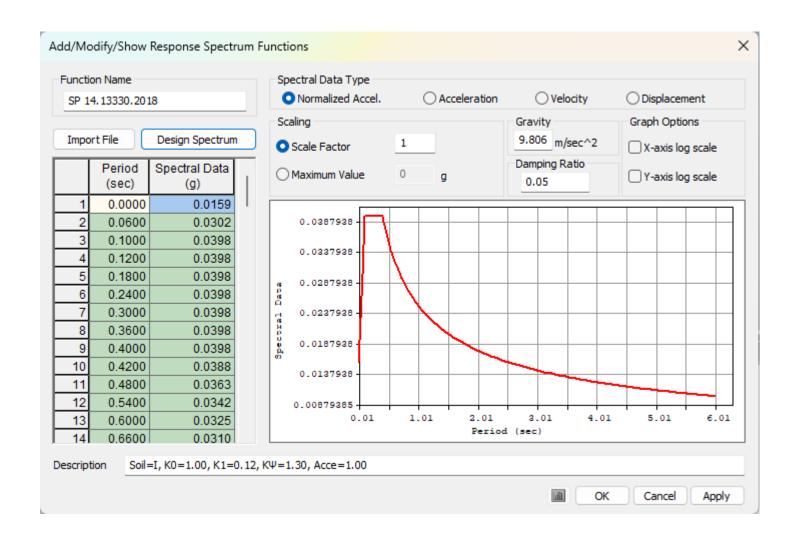
Dialog box for assigning load combination factors


Dialog box for assigning links and rules for forming load combinations

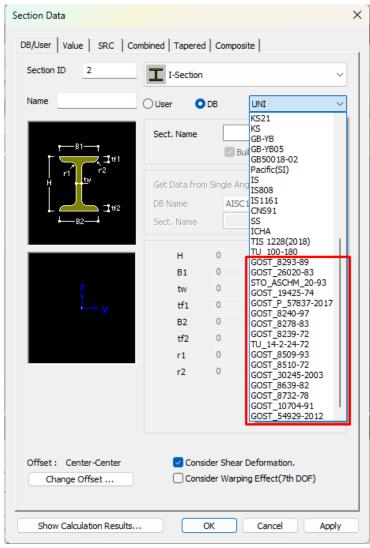
Implemented calculation of the pulsation component of the wind load according to SP 20.13330.2016

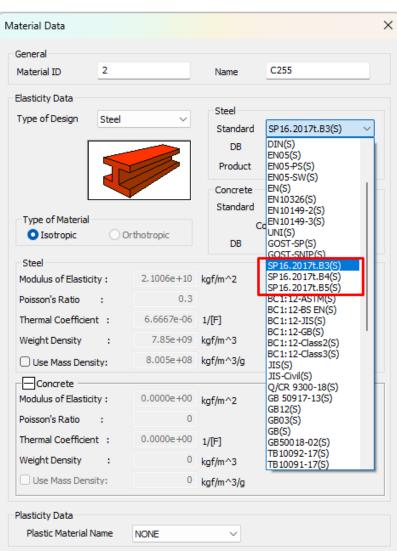
1. Calculation of the pulsation force acting on a rigid floor diaphraam

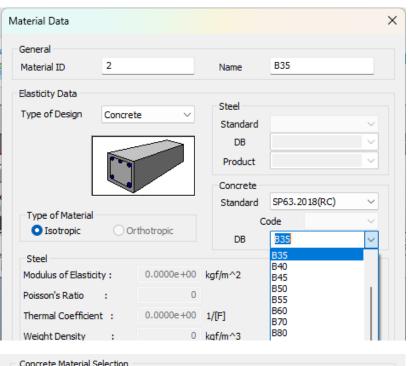

of the wind load - Wm



the wind load - Wg


Added response spectrum according to SP 14.13330.2018


Dialog box for generating a response spectrum in accordance with SP 14.13330.2018


Added base of materials and profiles for calculation according to Russian code

Additional sections of rolled steel sections

Materials of steel elements according to table 3,4,5 SP 16.13330.2017

Concrete Material Selection	1 ————				
Code : SP63.2018(RC)	~	Grade	:	B20	~
Specified Compressive Strength (fc fck)			:	1172673.64492	kgf/m^2
Light Weight Concrete Factor (Lambda) :				1	
Rebar Selection					
Code : SP63.2018(RC)	~				
Grade of Main Rebar :	~	Fy :		0	kgf/m^2
Grade of Sub-Rebar :	A240 A240 sw	Fys :		0	kgf/m^2
	A400 A400_sw A500			Modify	Close

Materials of reinforced concrete structures according to SP 63.13330.2018

